6.3捡起刷题

本文详细介绍了动态规划的概念和应用,通过步骤解析了如何用动态规划解决最小路径和问题。动态规划是一种经典算法,与深度优先搜索不同,它侧重于找到最优解。文章通过定义数组元素的意义、找出元素间的关系式及确定初始值,逐步阐述了动态规划的解决过程。同时,强调了动态规划与DFS算法的区别。
摘要由CSDN通过智能技术生成

1.什么是动态规划?   DP算法(Dynamic Programming,俗称动态规划)是最经典算法之一,

步骤一、定义数组元素的含义

由于我们的目的是从左上角到右下角,最小路径和是多少,那我们就定义 dp[i] [j]的含义为:当机器人从左上角走到(i, j) 这个位置时,最小的路径和是 dp[i] [j]。那么,dp[m-1] [n-1] 就是我们要的答案了。注意,这个网格相当于一个二维数组,数组是从下标为 0 开始算起的,所以 由下角的位置是 (m-1, n - 1),所以 dp[m-1] [n-1] 就是我们要走的答案。

步骤二:找出关系数组元素间的关系式

想象以下,机器人要怎么样才能到达 (i, j) 这个位置?由于机器人可以向下走或者向右走,所以有两种方式到达

一种是从 (i-1, j) 这个位置走一步到达

一种是从(i, j - 1) 这个位置走一步到达

不过这次不是计算所有可能路径,而是计算哪一个路径和是最小的,那么我们要从这两种方式中,选择一种,使得dp[i] [j] 的值是最小的,显然有

dp[i] [j] = min(dp[i-1][j],dp[i][j-1]) + arr[i][j];// arr[i][j] 表示网格中的值

步骤三、找出初始值

显然,当 dp[i] [j] 中,如果 i 或者 j 有一个为 0,那么还能使用关系式吗?答是不能的,因为这个时候把 i - 1 或者 j - 1,就变成负数了,数组就会出问题了,所以我们的初始值是计算出所有的 dp[0] [0….n-1] 和所有的 dp[0….m-1] [0]。这个还是非常容易计算的,相当于计算机图中的最上面一行和左边一列。因此初始值如下:

dp[0] [j] = arr[0] [j] + dp[0] [j-1]; // 相当于最上面一行,机器人只能一直往左走

dp[i] [0] = arr[i] [0] + dp[i] [0];  // 相当于最左面一列,机器人只能一直往下走

好难,还没消化。。。。。。。。

 而且者好像被归为dfs算法,即

深度优先搜索算法(Depth First Search,简称DFS):一种用于遍历或搜索树或图的算法。
 沿着树的深度遍历树的节点,尽可能深的搜索树的分支。当节点v的所在边都己被探寻过或者
在搜寻时结点不满足条件,搜索将回溯到发现节点v的那条边的起始节点。整个进程反复进行
直到所有节点都被访问为止。属于盲目搜索,最糟糕的情况算法时间复杂度为O(!n)。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值