我是灼灼,一只初学Java的大一金渐层。
向往余秀华和狄兰·托马斯的疯狂,时常沉溺于将情感以诗相寄;追逐过王尔德、王小波的文字,后陷于毛姆和斯蒂芬·金不可自拔;热爱文学的浪潮,白日梦到底却总在现实里清醒;艳羡平静又极度渴盼奔跑的力量。
欢迎与我交流鸭· QQ:1517526827;
个人博客:https://blog.csdn.net/weixin_52777510?spm=1001.2101.3001.5343
大学物理——教材:大学物理第六版
第三章|刚体的定轴转动(相关内容)
【连载】第一节 刚体定轴转动的角量描述
【连载】第二节 转动惯量 刚体定轴转动定律
【连载】第三节 定轴转动刚体的角动量守恒定律
第三章 刚体的定轴转动
-
第一章 质点运动学——研究如何描述物体的运动状态
- 位置、位移x、速度v、加速度a
- 角位移、角速度ω、角加速度β及其关系
-
第二章 质点动力学——研究物体之间相互作用与运动状态关系
- 力F、速度v、加速度a、冲量I、动量p、角动量、能量E、动能Ek、势能E及其关系
3-1 刚体定轴转动的角量描述
一、刚体的平动与转动
1.刚体
在外力的作用下,形状和大小不发生变化的物体
- 在运动中刚体内任意两点间的距离都保持不变
- 刚体是一种理想化的物理模型
- 刚体可看成是由许多相对位置不变的质点组成的物体
- 如果研究对象的形变可以忽略,则可以近似看作刚体处理
2.刚体的平动
刚体中任意两点的连线AB,在运动过程中始终保持平行
平动举例:
证明上图:
刚体中任意点的速度、加速度在运动过程中始终相同
研究刚体的平动==>质心的运动(质点的运动)
3.定轴转动
转动—— 刚体中各点都绕同一直线作圆周运动
定轴转动——转轴的位置和方向固定不变的转动
定轴转动刚体的各点,在同一时间内,对轴的转角相等,角速度和角加速度都相等。
刚体的转动可以用角量描述
本课程只讨论刚体的定轴转动~
4.刚体的运动
刚体的一般运动=质心的运动+绕质心的转动。
二、刚体定轴转动的描述
1.基本概念
转动平面:过刚体上某点p垂直于转轴的平面。
转动中心:转动平面与轴的交点 o
分析图得:
- 角速度方向向上,刚体的运动可以以刚体内任意一点p的运动的角量来描述。
- Op与x轴的夹角θ
- 刚体从上方看为沿逆时针方向旋转
如图:
刚体内任意p点的运动,在转动平面内绕o作圆周运动,且所有点的角量△θ,ω,β相同。
所以可用刚体中任一点p运动的**角量**△θ,ω,β来描述刚体的运动。
- 角位置θ
如上图为:Op与x轴的夹角θ
- 角位移
△t时间内刚体角位置的改变量(可以看作是角度的变换)
如图:
- p点转过了 △θ角度,用时△t
角位置初始值和最终值表示:
公式:
- 角速度矢量
方向:沿转轴(右手螺旋方向)
- 角速度矢量的表示:
5. 角加速度矢量
大小:
方向:沿转轴如图——
- 即β>0
方向相反,减速转动 。
- 即β<0
三、刚体的匀变速转动
当刚体绕定轴转动的角加速度β为**恒量**时,刚体做匀变速转动 .
刚体匀变速转动与质点匀变速直线运动公式对比——
只是换字母的不同~
四、角量与线量的关系
若刚体以角速度ω转动,对任一点P:位置矢量r, 速度v,
刚体中任一点线量与角量的关系
两个重要的关系:
重点公式!!!
练习题:
M=kωʌ2=Jβ