起
非文本节点?
关系,视觉特征
特征性,连通性?
非文本区域会影响正确率
内容信息的延迟性?
轮廓定位点,分类区域
多项式曲线,二分线分割
平衡定位点和字符级信息,延迟性/滞后性
提出位置感知转换模型,融合关系和视觉特征
仍是图像生成,引导
密集,部分重叠,保持流线:弱监督GCN
向后传播抑制错误
整体修改变片段修改
片段重叠后,聚集信息与视觉,关系推理相结合
1,重叠密集信息采取
2,近似分组轮廓取代定位点来推理轮廓
3,进化了(这他么也算
CTPN,SegLink,连接预测(八方位
然后是弯曲文本,边框变轮廓,TextSnake,角度加半径圆适应更弯的文本,此开始考虑几何和视觉特征
GCN融合几何,视觉,关系特征
PuzzleNet融合文段,角度差异小于5°
DPRG缩小文本段,更好的分组文本段,但仍是路由寻找?
区分文本非文本区域:1,可增强文本特征
文本字级,字符级,全局级特征
ContourNet,二维分析文本图像来抑制非文本(垂直和竖直
卷积中的通道数?
映射的文本实例?
引导文本区域建设
弱监督分出字,文本,全局在喂入GCN学习三特征
多重特征图像,文本连接,节点类型
几何特征:高度,角度,宽度
流线:较小的宽度,可利用连接形状去估计文本实例的形状
文本段小:可更好的区分字符,字符和单词间距,可更好的抑制错误
按比例缩小特征图像?
密集重叠的文本段:得到字符级,领接级特征(内容
:为三维映射下的特征图中的像素生成各小矩阵
保持密度和连通性为适应任意形状
文本段:字符,区间,非文本段(喂入GCN
(抑制错误吧,分清区间和非文本段:字符级注释,映射,空格间隔,颜色区分
为何要筛选非文本段间的区间段?
加入ground truth助于训练注释的添加,注释有助于文本段的分类
1卷积和3*3卷积:
关系预测和密集文本重叠:保证了近似轮廓的完整性和正确性
文本段的长期依赖性
视觉相似性,序列特征,几何特征
非相邻的文本段可能仍存在连接
自下而上进化
最新推荐文章于 2022-05-30 14:11:12 发布