一、树的基本概念
1.树: 树(Tree)是n(n≥0)个节点的有限集合T,它满足两个条件 :
(1) 有且仅有一个特定的称为根(Root)的节点;
(2) 其余的节点可以分为m(m≥0)个互不相交的有限集合T1、T2、……、Tm,其中每一个集合又是一棵树,并称为其根的子树(Subtree)
2.度: 节点的度:节点的子树的个数。 树的度:树中节点的最大度数就是树的度。
3.深度(高度): 节点的层数等于父节点的层数加一,根节点的层数定义为一。树中节点层数的最大值称为该树的高度或深度
4.叶节点: 度数为 0 的节点。 叶节点没有后继节点。
5.根节点: 根节点没有前驱节点。
6.树的逻辑关系: 树中节点的前驱节点,至多只能有一个。后继节点可以有零个或者多个。
7.二叉树: 二叉树(Binary Tree)是n(n≥0)个节点的有限集合,它或者是空集(n=0),或者是由一个根节点以及两棵互不相交的、分别称为左子树和右子树的二叉树组成。二叉树严格区分左右。
8.满二叉树: 具有k层的二叉树,如果节点的个数为 2k-1 个(2的k次方减1个)。那么这棵树称之为满二叉树。
9.完全二叉树: 满足两个条件的二叉树。(1) 只有最下面两层有度数不为2的节点。 (2)最下面一层的节点,都集中在左边的若干位置上。
二、二叉树遍历
由于二叉树的递归性质,在遍历二叉树时,可以使用递归的方式。
1.先序遍历: 根左右
2.中序遍历: 左根右
3.后序遍历: 左右根
#include <stdio.h>
#include <stdlib.h>
typedef struct node_t
{
char data;
struct node_t *lchild,*rchild;
}bitree_t;// 先序遍历
void pre_order(bitree_t *root)
{
if(root == NULL) // 因为是递归函数,所以结束条件不要忘记!!!
return ;
printf("%c ",root->data);
pre_order(root->lchild);
pre_order(root->rchild);
return ;
}
// 中序遍历
void in_order(bitree_t *root)
{
if(root == NULL)
return ;
in_order(root->lchild);
printf("%c ",root->data);
in_order(root->rchild);
return ;
}
// 后序遍历
void post_order(bitree_t *root)
{
if(root == NULL)
return ;
post_order(root->lchild);
post_order(root->rchild);
printf("%c ",root->data);
return ;
}