二叉树的遍历(C++)

本文详细介绍了树的基本概念,包括树的定义、节点属性(如度、深度和叶节点)、根节点和逻辑关系,以及二叉树的特性和分类(如满二叉树和完全二叉树)。同时,通过代码展示了先序遍历、中序遍历和后序遍历的实现方法。
摘要由CSDN通过智能技术生成

一、树的基本概念

1.树: 树(Tree)是n(n≥0)个节点的有限集合T,它满足两个条件 :
        (1) 有且仅有一个特定的称为根(Root)的节点;
        (2) 其余的节点可以分为m(m≥0)个互不相交的有限集合T1、T2、……、Tm,其中每一个集合又是一棵树,并称为其根的子树(Subtree)
2.度:    节点的度:节点的子树的个数。   树的度:树中节点的最大度数就是树的度。 
3.深度(高度): 节点的层数等于父节点的层数加一,根节点的层数定义为一。树中节点层数的最大值称为该树的高度或深度
4.叶节点: 度数为 0 的节点。 叶节点没有后继节点。 
5.根节点: 根节点没有前驱节点。 

6.树的逻辑关系: 树中节点的前驱节点,至多只能有一个。后继节点可以有零个或者多个。 

7.二叉树:  二叉树(Binary Tree)是n(n≥0)个节点的有限集合,它或者是空集(n=0),或者是由一个根节点以及两棵互不相交的、分别称为左子树和右子树的二叉树组成。二叉树严格区分左右。 

8.满二叉树:  具有k层的二叉树,如果节点的个数为 2k-1 个(2的k次方减1个)。那么这棵树称之为满二叉树。
9.完全二叉树: 满足两个条件的二叉树。(1) 只有最下面两层有度数不为2的节点。  (2)最下面一层的节点,都集中在左边的若干位置上。 

二、二叉树遍历

由于二叉树的递归性质,在遍历二叉树时,可以使用递归的方式。  
    1.先序遍历:  根左右  
    2.中序遍历:  左根右 
    3.后序遍历:  左右根 

 #include <stdio.h>
#include <stdlib.h>
typedef struct node_t 
{
    char data;
    struct node_t *lchild,*rchild;
}bitree_t;

// 先序遍历  
void pre_order(bitree_t *root)
{
    if(root == NULL)      // 因为是递归函数,所以结束条件不要忘记!!!
        return ;
    printf("%c ",root->data);
    pre_order(root->lchild);
    pre_order(root->rchild);
    return ;
}
// 中序遍历  
void in_order(bitree_t *root)
{
    if(root == NULL)
        return ;
    in_order(root->lchild);
    printf("%c ",root->data);
    in_order(root->rchild);
    return ;
}
// 后序遍历   
void post_order(bitree_t *root)
{
    if(root == NULL)
        return ;
    post_order(root->lchild);
    post_order(root->rchild);
    printf("%c ",root->data);
    return ;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值