提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
一、Armstrong公里
1)自反律(reflexivity)
若YCXCU,则X→Y在R上成立。即一组属性函数决定它的所有子集例如,对关系模式SC(Sno,Sname,Cno,Credit,Grade),有:(Sno,Cno)→Cno和(Sno,Cno)→Sno
(2)增广律(augmentation)。
若X→Y在R上成立,且ZCU,则XZ→YZ在R上也成立。
(3)传递律(transitivity)。
若X→Y和Y→Z在R上成立,则X→Z在R上也成立。
(3)合并规则(union rule)。
若XY和X→Z在R上成立,则X→YZ在R上也成立。
例如,对关系模式 Student(Sno,Sname,Sdept,Sage),有Sno→(Sname,Sdept),Sno Sage,则有Sno→(Sname,Sdept,Sage)成立。
(2)分解规则(decomposition rule)。
若X→Y和ZCY在R上成立,则X→Z在R上也成立。从合并规则和分解规则可得到如下重要结论:
在系 如果A…A。是关系模