李航老师《统计学习》的课程笔记(数学基础篇)

本文介绍了矩阵和向量空间的基础知识,包括矩阵乘法和向量的内积。接着,阐述了概率的基本概念,如乘法定理、全概率公式和贝叶斯公式。进一步讨论了随机变量的类型,如离散型(二项分布、泊松分布)和连续型(均匀分布、指数分布、正态分布)。文章还涉及了离散随机变量的函数、多维随机变量的分布、条件分布以及统计学中的中心极限定理和抽样分布。最后提到了参数估计方法,包括极大似然估计和贝叶斯估计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、矩阵和向量空间

1.矩阵的概念及使用

1.矩阵的乘法:   矩阵乘法       与       Hadaward(按位)乘法(必须满足两矩阵形状一样)

2.向量空间的概念和使用

1.  两个向量的内积:A*B = AB^T=|A||B|cos\theta    (当内积等于0,两向量正交)

2.当求向量某个方向上的向量时:A*E=|A|cos\theta

二、概率基础

1.概率的概念

2.概率的公式

(乘法定理):P(AB)=P(B|A)P(A)          P(ABC)=P(C|AB)P(B|A)P(A)

全概率公式:    P(A)=P(A|B_{1})+P(A|B_{2})+P(A|B_{3})+\cdots +P(A|B_{n})

贝叶斯公式:P(B_{i}|A)=\frac{P(A|B_{i})P(B_{i})}{\sum_{j=1}^{n}P(A|B_{j})P(B_{j})}

事件的独立性

三、随机变量及其分布   

1.随机变量

1.定义

2.刻画随机变量的方法:离散型随机变量(概率分布):P(x_{1}=i)=\frac{1}{6};i=(1,\cdots ,6)

                                       连续性随机变量(概率密度):P(a\leq x\leq b)=\int_{a}^{b}f_{x}(t)dt

2.离散型概率分布

1.(0-1分布):   P\left \{ X=k \right \}=p^{k}(1-p)^{1-k}    其中k=0,1      0<p<1

2.(n重)伯努利试验、二项分布:P\left \{ X=k \right \}=C_{n}^{k}p^{k}(1-p)^{n-k}  ,记为X~b(n,p)

3.泊松分布: P\left \{ X=k \right \}=\frac{\lambda ^{k}e^{-\lambda }}{k!},k=0,1,2\cdots,记为X~\pi(\lambda)

3.连续型概率分布

1.概率密度

2.均匀分布:f(x)= \frac{1}{b-a} (a<x<b),记为X~U(a,b)

3.指数分布:f(x)=\frac{1}{\theta }e^{-x/\theta },0<x       或        f(x)=\lambda e^{-\lambda x},0<x          \lambda =\frac{1}{\theta }

4.正态分布:f(x)=\frac{1}{\sqrt{2\pi }\sigma }e^{-(x-\mu )^{2}/2\sigma ^{2}},-\infty <x<+\infty  ,记为Z=\frac{X-\mu }{\sigma }~N(0,1)

4.离散随机变量的函数

f(x)=f_{x}[h(y)]|{h}'(y)|,\alpha <x<\beta

其中   h(y)是g(x)的反函数    \alpha =min\left \{ g(-\infty )<x<g(+\infty )) \right \},\beta =max\left \{ g(-\infty )<x<g(+\infty ) \right \}

5.多维随机变量及其分布

1.二维随机变量函数:F(x,y)=P\left \{ (X\leqslant x)\cap (Y\leq y) \right \}=P\left \{ X\leq x,Y\leq y \right \}

离散型分布;连续型分布;边缘分布律(单一变量分布)

2.条件分布

3.独立随机变量

4.数学期望

5.方差、标准差或均方差

6.相关系数、协方差

四、中心极限定理

n个独立同分布的随机变量相叠加,得到的和将越来越近私于一个正态分布。

在实际中,一个随机现象往往是多个随机因素的叠加。所以很多随机现象的分布都可以用正态分布来描述。

五、样本及抽样分布

在概率论里,我们所研究的随机变量分布都是假设已知。

1.随机样本

2.频率直方图

六、极大似然估计和贝叶斯估计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值