一、矩阵和向量空间
1.矩阵的概念及使用
1.矩阵的乘法: 矩阵乘法 与 Hadaward(按位)乘法(必须满足两矩阵形状一样)
2.向量空间的概念和使用
1. 两个向量的内积: (当内积等于0,两向量正交)
2.当求向量某个方向上的向量时:
二、概率基础
1.概率的概念
2.概率的公式
(乘法定理):
全概率公式:
贝叶斯公式:
事件的独立性
三、随机变量及其分布
1.随机变量
1.定义
2.刻画随机变量的方法:离散型随机变量(概率分布):
连续性随机变量(概率密度):
2.离散型概率分布
1.(0-1分布): 其中k=0,1 0<p<1
2.(n重)伯努利试验、二项分布: ,记为X~b(n,p)
3.泊松分布: ,记为X~
(
)
3.连续型概率分布
1.概率密度
2.均匀分布:,记为X~U(a,b)
3.指数分布: 或
4.正态分布: ,记为
4.离散随机变量的函数
其中 h(y)是g(x)的反函数
5.多维随机变量及其分布
1.二维随机变量函数:
离散型分布;连续型分布;边缘分布律(单一变量分布)
2.条件分布
3.独立随机变量
4.数学期望
5.方差、标准差或均方差
6.相关系数、协方差
四、中心极限定理
n个独立同分布的随机变量相叠加,得到的和将越来越近私于一个正态分布。
在实际中,一个随机现象往往是多个随机因素的叠加。所以很多随机现象的分布都可以用正态分布来描述。
五、样本及抽样分布
在概率论里,我们所研究的随机变量分布都是假设已知。
1.随机样本
2.频率直方图