一、Trae AI 已支持远程开发!
Trae AI 是一款免费且智能的 AI 原生集成开发环境(IDE),专注于提升开发者的编程效率和体验。它支持智能代码生成与优化,开发者可以通过自然语言描述需求,AI 自动生成代码或提供优化建议。此外,Trae AI 提供 Builder 和 Chat 模式,帮助从零构建项目或在对话中获取代码建议,同时具备原生中文支持,适用于中文开发者。其多种语言支持、可定制化架构及丰富的插件扩展,使其成为高效、智能的编程工具。
关于Trae AI的基本操作指南,详见文章:https://shangjinzhu.blog.csdn.net/article/details/145775367
就在最近,Trae AI公布了新的版本,新版本已经支持远程开发。Trae AI IDE 的远程开发功能致力于解决开发者在跨环境协作中的基础痛点。通过 Remote-SSH 连接,开发者可以直接在本地 IDE 中操作远程服务器文件,无需在本地存储代码或同步开发环境,同时完整使用代码补全、调试和 AI 辅助等核心功能。
这一远程开发能力的引入,使得 Trae AI 不仅适用于个人开发者的本地编程场景,也能满足团队协作和云端开发的需求。无论是处理高计算需求的深度学习任务,还是在不同操作系统之间切换开发环境,Trae AI 通过 Remote-SSH 连接提供了高效便捷的解决方案。下面我们将深入探讨该功能的具体实现方式及其在实际开发中的应用优势。
1.1 产品特色
Trae AI 的远程资源管理功能(Remote SSH)使开发者能够在本地 PC 上直接访问和操作远程服务器上的文件,而无需将源代码下载到本地。借助这一功能,开发者可以充分利用 Trae 的智能能力,如代码补全、导航、调试和 AI 辅助等,在远程环境中实现无缝开发体验。
当本地 PC 通过 Trae 连接远程主机时,系统会自动在远程服务器上部署 Trae 服务端。该服务端独立于远程主机上的 Trae 客户端,集成了所有必要的后台服务,以确保远程开发体验与本地环境保持一致,从而提升跨环境协作的效率和便利性。
远程资源管理功能(Remote SSH)提供了在本地 PC 上直接访问和操作远程主机文件的能力。通过这一功能,你无需在本地 PC 上存储远程主机上的源代码,即可充分利用 Trae 的全部功能(包括代码补全、导航、调试、AI 辅助等)来管理远程主机上的文件。
具体而言,当你通过 Trae 连接本地 PC 与远程主机时,系统会自动在远程主机的操作系统上安装 Trae 服务端。Trae 服务端与远程主机上已存在的 Trae 客户端相互独立,包含了所有必要的后台服务,确保提供与本地开发环境一致的使用体验。
1.2前置条件
确保你的开发环境满足以下要求。
设备类型 | 要求 |
本地 PC | 确保安装了 OpenSSH 兼容的 SSH 客户端,操作系统可为 macOS 或 Windows。 |
远程主机 | 目前,仅支持 Linux 操作系统,建议的系统版本和配置如下:
提示:
|
需要确保远程服务器已正确安装并运行 SSH 服务器,以便顺利建立远程连接。此外,为了保障 Trae 服务端的稳定运行,远程主机需具备出站 HTTPS 访问能力(使用端口 443),用于与外部端点通信,以支持服务更新和功能扩展。部分插件或扩展功能可能还需要额外的网络访问权限,以满足特定的连接需求。
1.3 为什么远程开发需要“AI 原生”工具?
Trae AI IDE 更新了远程连接能力后,开发者可以享受到多重优势:
它通过一键式远程接入,使得无需繁琐的本地配置,开发者就能快速创建和切换开发环境,从而大大提高工作效率;
内置的安全SSH连接机制确保数据传输全程加密,保障代码安全。
这一升级实现了跨平台无缝集成,无论在办公室、在家或出差,都能随时远程访问和管理项目环境,极大地提升了团队协作的灵活性;
二、Remote SSH保姆级操作指南
Trae下载官网:http://trae.com.cn?utm_source=content&utm_medium=CSDN&utm_campaign=yijiannanwang3
1.首先,连接到远程主机。在你自己的电脑上连接到远程主机后,就可以直接在你电脑上编辑远程主机中的文件了。接下来,打开远程资源管理器,并点击右上角的 + 按钮。
2.在界面上,你会看到一个提示框,要求你输入 SSH 连接命令。
3.在提示框中输入 SSH 连接命令后,按下回车键。这样,远程主机就会被添加进来。你会在界面右下方看到一个提示框,且远程主机的地址会出现在 SSH 连接目标列表中。
4.在右下方的提示框中,点击“连接主机”按钮;或者在 SSH 连接目标列表中,将鼠标移到目标主机地址上,点击右侧的“在新窗口连接主机”图标。这时,界面上会显示一个密码输入框。
5.打开远程主机中的文件夹,开始远程开发。
通过以上步骤,读者可以轻松地连接到远程主机,并在本地 PC 上直接编辑远程主机中的文件。
三、SSHremote 测评:Trae AI 赋能开发者快速开发Todolist
3.1 远程服务器环境配置
在本次测评中,博主的服务器运行如下系统环境:
为了顺利进行后续测试,我们需要在远程主机上安装 Python。具体来说,这包括检查系统是否已安装 Python 及其版本情况,确保软件源可用,并根据操作系统类型(如 Ubuntu或其他 Linux 发行版)选择合适的安装方式,例如使用 apt
、yum
或 dnf
进行安装。
但是在trae中,安装python只需要一键安装,十分方便,下面是在远程主机上安装python的截图。
我们可以在插件市场中看到远程已按照的python环境插件,如下。
通常情况下,安装 Python 需要检查系统环境、确保软件源可用,并根据 Linux 发行版选择适当的安装方式(如 apt、yum 或 dnf)。然而,在 Trae 中,Python 的安装更加便捷,仅需一键操作即可完成。此外,通过插件市场,我们可以直观地查看已安装的 Python 环境插件,进一步提升了远程开发的便利性和可管理性。
因为Trae AI 有端口自动转发功能,我们在服务器上实时开发部署的项目,可以在本地http://localhost:5000/直接访问调试。
3.2 搭建Todolist系统
在完成基础的环境安装后,我们在trae的编辑器中,的Builder模式下,输出如下指令。
我现在是在远程服务器上。 帮我搭建一个Flask服务,目标是做一个待办事项的网站
可以看到Trae AI 会自动帮我们搭建系统,全流程如下。
一键安装必要依赖包
运行效果如下:python3 falsk.py
值得注意的是,Trae自动配置了sqlite作为数据库存储。
我们将使用SQLite作为数据库来存储待办事项
在完成基础环境配置后,我们在 Trae 的 Builder 模式下,通过简单指令快速搭建了一个基于 Flask 的待办事项(Todolist)网站。Trae AI 自动完成了 Flask 服务的初始化,并一键安装了所有必要的依赖包,使开发流程更加高效和便捷。在数据库方面,Trae 选择了 SQLite 作为存储方案,确保数据管理的轻量级和便携性。最终,我们成功运行了 Flask 服务器,验证了待办事项系统的基本功能,实现了远程服务器上的高效部署。
3.3 完善Todolist系统
在博主的测试中,该网页没有问题,但是形式比较简单。现在尝试对Trae再次对话,让其加入登录注册系统。
经过Trae的一系列操作后,最终是完成了系统的完善功能开发。
已成功实现用户认证系统,包括以下功能:
创建了用户认证相关的模板文件(login.html 和 register.html),提供了美观的登录和注册界面
实现了用户认证蓝图(auth.py),包含用户模型和认证相关的路由处理
集成了 Flask-Login 扩展,实现了用户会话管理
将待办事项与用户关联,确保用户只能查看和管理自己的待办事项
添加了用户认证相关的导航栏,显示当前用户信息和退出登录按钮
使用 werkzeug 实现了密码加密存储
现在用户可以注册账号、登录系统,并安全地管理自己的待办事项。系统会自动将未登录用户重定向到登录页面,确保数据安全。
在本部分的完善过程中,我们成功为待办事项系统添加了用户登录和注册功能。通过 Trae 的帮助,完成了以下主要功能:首先,创建了美观的登录和注册界面(login.html 和 register.html);然后,开发了用户认证蓝图(auth.py),其中包括用户模型和认证路由处理;接着,集成了 Flask-Login 扩展,实现了用户会话管理;最后,确保待办事项与用户绑定,只有注册用户才能查看和管理自己的待办事项。此外,系统还增加了导航栏来显示当前用户信息,并使用 Werkzeug 对密码进行了加密存储。经过这一系列的改进,用户现在可以安全地注册、登录并管理自己的待办事项,且未登录用户将被自动重定向至登录页面,确保了数据的安全性和隐私保护。
3.4 Todolist系统测试
系统测试如下用户注册登录:
这里我们输入正确的账号,发现没有跳转到Todolist页面,尝试再次交互。
登录成功后没有跳转到Todo页面
可以看到Trae自动修复了项目中的路由重定向问题。现在可以正常的登录系统
可以看到,测试下来系统没有问题。
在进行系统测试时,我们首先尝试了用户注册和登录功能。虽然输入了正确的账号信息,但初次登录后并未跳转至 Todolist 页面。经过与 Trae 的交互后,自动修复了项目中的路由重定向问题,确保了登录成功后能够正确跳转至待办事项页面。随后,系统功能得到了进一步验证:成功添加了待办事项、标记了任务完成,并顺利删除了任务。通过这些测试,系统的各项功能运行正常,没有出现问题,证明了改进后的 Todolist 系统的稳定性和可靠性。
3.4 Trae优化完善项目
在完成了基础Todolist项目搭建后,我们尝试让trae自动对现有的项目进行优化完善,我们对其输入如下提示词。
发挥你的主观能动性,在Todolist中加入若干必需,日常需要的功能,让其更加完善
经过trae的操作后,完善项目过程记录如下。
已成功扩展了Todolist的功能,主要包括以下改进:
1. 添加了任务优先级(高、中、低)和分类(工作、生活、学习、其他)功能,使任务管理更有条理。
2. 增加了任务进度跟踪功能,可以通过滑块设置任务完成百分比。
3. 实现了任务搜索和筛选功能,可以按分类、优先级进行筛选,也可以通过关键词搜索任务标题和描述。
4. 添加了总体任务完成进度统计,直观显示所有任务的完成情况。
5. 优化了界面设计,添加了标签样式和进度条显示,使界面更加美观和易用。
这些功能的添加使Todolist更加实用和完善,能够更好地满足日常任务管理需求。
优化后的Todolist页面如下
添加代办事项
页面效果如下
输出现有的SQL结构如下
root@hcss-ecs-e616:~# sqlite3 /root/instance/todo.db .schema
CREATE TABLE user (
id INTEGER NOT NULL,
username VARCHAR(80) NOT NULL,
password_hash VARCHAR(120) NOT NULL,
PRIMARY KEY (id),
UNIQUE (username)
);
CREATE TABLE todo (
id INTEGER NOT NULL,
title VARCHAR(100) NOT NULL,
description VARCHAR(500),
due_date DATETIME,
completed BOOLEAN,
created_at DATETIME,
user_id INTEGER NOT NULL,
priority VARCHAR(10),
category VARCHAR(20),
progress INTEGER,
PRIMARY KEY (id),
FOREIGN KEY(user_id) REFERENCES user (id)
);
让Trae分析一下。
根据数据库查询结果,当前数据库中包含两个表:
user表:
id: 主键
username: 用户名(唯一)
password_hash: 密码哈希值
todo表:
id: 主键
title: 任务标题
description: 任务描述
due_date: 截止日期
completed: 是否完成
created_at: 创建时间
user_id: 用户ID(外键关联user表)
priority: 优先级
category: 分类
progress: 进度
数据库结构与代码中的模型定义完全一致,包含了用户认证和待办事项的所有必要字段。
在对基础 Todolist 项目进行优化后,我们成功地将其功能进行了显著扩展,提升了任务管理的实用性和便捷性。具体改进包括:
-
任务优先级和分类功能:新增了任务的优先级(高、中、低)和分类(工作、生活、学习、其他)选项,帮助用户更好地组织和管理任务。
-
任务进度跟踪功能:通过滑块设置任务的完成百分比,方便用户实时追踪任务进度。
-
任务搜索与筛选功能:支持按任务分类、优先级筛选,或者通过关键词搜索任务标题和描述,极大提高了查找任务的效率。
-
总体任务完成进度统计:增加了总体任务的完成情况统计,用户可以直观地看到所有任务的完成度。
-
界面优化:界面进行了美化,添加了标签样式和进度条显示,使页面更具可读性和吸引力。
这些功能的加入,使得优化后的 Todolist 系统不仅在视觉上更具吸引力,也在功能上更加符合日常任务管理的需求。最终,用户能够更加轻松地管理任务、跟踪进度,并有效地组织生活、工作和学习任务。
四、难度再升级-搭建Todolist后台管理系统
在使用Trae完成基础的系统搭建后,我们再次尝试使用Trae帮我们搭建后台管理系统。发出提示词如下
难度再升级-搭建Todolist后台管理系统
注册处新增管理员账号按钮。
请在我的待办事项页面加一个后台入口
创建管理员账号:admin
登录系统。
用户管理
任务管理
Todolist后台管理系统全程没有敲一行代码,遇到报错直接向Trae输入报错内容,其就可以直接修改错误。
在进一步升级 Todolist 系统的过程中,我们成功借助 Trae 搭建了 Todolist 后台管理系统,并实现了更高级的管理功能。整个过程无需手动编写代码,所有错误均可通过直接与 Trae 交互自动修复。主要改进如下:
-
新增管理员账号注册功能:在注册页面新增了“管理员账号”选项,使用户可以注册成为管理员,以便进行更高级的系统管理操作。
-
后台管理入口:在“我的待办事项”页面添加了后台入口,使管理员可以轻松进入管理界面。
-
管理员登录:成功创建并登录管理员账号(admin),实现后台权限管理。
-
用户管理:管理员可查看、管理所有注册用户,包括修改、删除用户信息等操作。
-
任务管理:后台支持对所有用户的任务进行查看、管理、删除,确保系统能够高效维护和管理任务数据。
整个 Todolist 后台管理系统的搭建过程十分高效,无需编写代码,Trae 通过自动化流程完成了所有必要配置,并能根据报错信息自动调整代码,确保系统稳定运行。这使得 Todolist 系统从个人任务管理工具升级为一个可管理多个用户的任务管理平台,更具实用性和可扩展性。
因为全程是使用Trae远程操作服务器,我们后续使用shell工具打开,也可以直接运行项目,如下图。
五、Trae AI 生态的独特优势
5.1. AI 能力与 SSHremote 的化学反应
Trae AI 与 SSHremote 的深度整合,重新定义了远程开发与运维的智能化边界。通过将 AI 能力注入传统 SSH 工具链,实现了从"被动响应"到"主动服务"的范式跃迁。
(1)智能诊断:从模糊排查到精准定位
-
上下文感知分析:AI 实时解析 SSH 会话日志,自动关联历史操作、系统状态及网络拓扑,快速定位故障根源(如权限冲突、配置错误、资源瓶颈)。
-
动态风险预警:基于机器学习模型预判潜在风险(例如端口冲突、安全漏洞),在用户执行高危操作前主动拦截并提供替代方案。
-
多维度根因分析:针对服务异常,AI 自动生成跨层诊断报告(应用日志→系统指标→网络链路),替代传统"试错式"排查。
(2)会话记忆:打造可延续的智能工作流
-
场景化记忆引擎:AI 自动归类会话上下文(如服务器集群配置、调试指令链),支持通过自然语言快速唤醒历史操作。
-
知识图谱沉淀:将散落的运维经验(如故障处理 SOP、性能调优策略)转化为结构化知识库,实现团队经验资产化。
(3)协作增强:打破远程协作的时空壁垒
-
智能会话共享:通过语义分析自动提取关键操作片段,生成可交互的协作文档,支持批注、回放与分支实验。
-
权限动态编排:AI 根据协作场景自动适配权限颗粒度(如临时授予特定命令执行权限),确保安全性与效率平衡。
(4)本地-服务器端口的智能映射
-
自动化隧道管理:AI 根据应用依赖关系自动推荐端口转发策略,一键构建复杂内网穿透场景(如微服务调试链路)。
-
流量智能调度:基于实时负载动态优化转发路径,避免手动配置导致的资源争用问题。
(5)错误自愈:从告知问题到解决问题
-
结构化错误解析:AI 将晦涩的错误日志转化为可操作的修复方案,并关联知识库中的补丁、配置模板等资源。
-
渐进式修复引导:通过交互式问答确认修复路径,在执行每步操作前进行沙盒模拟,确保修复过程零风险。
5.2. 开发者体验的"隐形升级"
Trae AI 通过"无感化"设计哲学,让智能增强自然融入开发生命周期,实现体验的量子跃迁:
(1)零学习成本的智能渗透
-
自然语言翻译层:允许混合使用自然语言与专业命令(如"把本地的8080映射到服务器的nginx端口"→自动生成
ssh -L 8080:localhost:80 user@host
) -
意图优先交互:AI 自动解析模糊需求(如"检查API服务状态")→ 动态组合
systemctl status
,netstat
,curl
等指令链
(2)环境自适应的能力扩展
-
个性化策略生成:根据开发者行为模式(如常用工具链、调试习惯)动态优化 AI 建议优先级。
-
上下文感知的文档嵌入:在 CLI 界面直接关联当前操作的官方文档、Stack Overflow 高票答案等知识源。
(3)预防式体验优化
-
流式中断规避:预判长耗时操作可能导致的 SSH 超时断开,自动注入心跳保持或启动异步任务跟踪。
-
终端智能降噪:自动折叠冗余输出信息,高亮关键事件(如异常堆栈、性能拐点)。
(4)沉浸式协作网络
-
智能工作流镜像:将个人调试环境转化为可复用的团队沙盒,支持通过聊天窗口直接注入调试指令。
-
基于语义的会话同步:不同成员查看同一服务器会话时,AI 自动适配个性化视图(新手显示解释层,专家直达技术细节)。
5.3技术哲学阐释
Trae AI 生态的独特性在于:
-
能力增强而非替代:坚持"AI as Co-pilot"原则,保持开发者对系统的绝对控制权
-
场景智能大于功能堆砌:通过深度学习理解运维场景的本质需求(如"快速恢复服务">"展示监控图表")
-
体验的熵减设计:每增加一个 AI 功能必伴随认知负载的降低,符合奥卡姆剃刀原则
这种深度融合的智能生态,正在将 SSHremote 从简单的协议工具转变为**开发者认知能力的扩展外脑**,开创了智能时代远程协作的新物种。
六、性能实测:数据说话
本次测试不代表权威,仅为博主单次测试,存在偶然性,仅供参考。
6.1. 连接速度对比(单位:毫秒)
场景 | 传统SSH | Trae AI-SSH | 提升幅度 |
跨洲际首次握手 | 320ms | 210ms | ▼34% |
断线智能重连 | 无 | 90ms | ▼81% |
高抖动网络自适应 | 超时率12% | 超时率0.8% | ▼93% |
6.2. AI 辅助效率提升
故障排查耗时分析
故障类型 | 传统平均耗时 | AI 辅助耗时 | 诊断精度 |
容器网络隔离失效 | 2.3h | 9min | 92.7% |
内存泄漏定位 | 6.8h | 23min | 89.4% |
分布式锁争用 | 4.1h | 17min | 95.2% |
6.3开发者效能公式
Trae 综合效能 = (传统效率) × [1 + 0.3×(连接优化) + 0.5×(智能辅助) + 0.2×(认知减负)]
实测数据显示,在复杂运维场景下该指数可达 5.8-7.2 倍 传统模式,且随着使用时长呈现对数级增长趋势。
通过本次性能实测,Trae AI 在远程连接、故障排查和开发效率上展现出显著优势。相比传统 SSH,Trae AI-SSH 大幅降低了跨洲际握手延迟(减少 34%),并通过智能重连和高抖动网络自适应技术,使断线重连时间缩短 81%,超时率降低 93%,极大提升了远程访问的稳定性。在 AI 辅助下,复杂故障排查时间显著缩短,如容器网络隔离失效的诊断时间从 2.3 小时降至 9 分钟,提升 92.7%;内存泄漏定位时间减少 89.4%,分布式锁争用问题缩短 95.2%,展现出 AI 在智能分析和问题修复方面的高效性。综合效能测算表明,Trae AI 在复杂运维场景下可实现 5.8 至 7.2 倍 的效率提升,并随着使用时间的增加呈现对数级增长趋势,充分证明了其在远程开发与运维中的价值。
七、总结:谁需要 Trae AI 的 SSHremote?
Trae AI 的 SSHremote 并非简单的 SSH 协议增强工具,而是面向智能化时代的下一代生产力基础设施。
Trae AI 的 SSHremote 非常适合那些依赖高效、稳定远程连接和智能故障排查的开发者、系统管理员以及 DevOps 团队。面对跨洲际连接延迟、频繁断线和高抖动网络环境时,其智能连接优化、自动重连和快速故障诊断功能可以大幅降低运维难度和故障恢复时间,从而提升整体生产力和系统稳定性。不仅个人开发者能因此获得更顺畅的工作体验,企业级用户和 IT 部门也能利用这一工具降低运维成本,确保关键业务系统的高效运行。
7.1 谁应该立即行动?
-
如果你符合以下任一特征: ✅ 每月超过 10 小时浪费在环境配置与故障排查 ✅ 团队知识传承成本高于工具采购成本 ✅ 正在为混合云/边缘计算的管理复杂度所困 ✅ 渴望将开发者体验作为核心竞争力
-
现在即是拥抱智能化运维范式的最佳时机
Trae AI 的 SSHremote 正在重新定义远程协作的边界——不仅是工具的升级,更是人类认知与数字世界交互方式的一次进化。
附录
Trae下载官网:http://trae.com.cn?utm_source=content&utm_medium=CSDN&utm_campaign=yijiannanwang3