自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(14)
  • 资源 (1)
  • 问答 (1)
  • 收藏
  • 关注

原创 maven环境搭建和项目创建

maven的环境搭建和项目创建

2023-03-31 23:23:58 325

原创 LSTM多步时间序列预测+区间预测(附代码实现)

LSTM多步时间序列预测,往后滚动预测,及其区间预测

2023-02-21 11:22:48 14025 2

原创 keras中保存与调用预训练(离线)模型

在遇到数据量庞大的数据集时,训练时长是一个巨大的问题。

2022-11-19 13:41:14 1360

原创 keras中的早停机制EarlyStopping与回调函数ReduceLROnPlateau

ReduceLROnPlateau与EarlyStopping配合使用训练模型,会非常方便。

2022-11-19 11:35:52 2090

原创 CuDNNLSTM模型与LSTM模型(tensorflow-gpu的使用)

使用同一数据集,LSTM的耗时比CuDNNLSTM整整慢了8-10倍。

2022-11-19 11:19:52 3095

原创 预测中的各种数据处理

不同数据集之间的数据处理在预测过程中起到的的作用十分重要

2022-10-15 15:05:37 787

原创 单步预测与多步与预测的联系与区别

通常来说,时间序列预测描述的是在下一个时间步预测出的值,这被称为单步预测。但是有些情况下,预测任务需要预测出未来多个时间步的值,那这种情况就被称为多步预测。​

2022-07-04 16:41:45 10073 7

原创 计算机博弈大赛详解

国内曾有人提出,国际象棋计算机程序已经可以战胜世界棋王卡斯帕罗夫,还有没有必要开展中国象棋计算机博弈方面的研究工作?中国象棋的计算机博弈难度决不在国际象棋之下。目前中国象棋、日本将棋和围棋已经成为计算机博弈领域新的挑战。......

2022-07-01 10:07:43 3578

原创 K-means与K-means++

目录K-means算法步骤K-Means++算法步骤K-means与K-means++区别K-means算法步骤1、随机初始化K个聚类中心2、计算每个样本与k个聚类中心的相似度,将样本划分到与之最相似的类中3、计算划分到每个类别中所有样本特征的均值,并将该均值作为每个类别新的聚类中心;4、重复2、3步操作,直至聚类中心不再改变,输出最终的聚类中心。K-Means++算法步骤K-Means++算法在初始化聚类中心时的基本原则是使聚类中心之间的相互距离尽可能的远,其初始过

2022-05-24 16:29:03 1672

原创 时间序列预测——LSTM模型(附代码实现)

长短时记忆网络( Long short-term memory,LSTM )是一种循环神经网络 (Recurrent neural network, RNN)的特殊变体。

2022-05-14 17:45:49 90223 45

原创 pycharm部署项目到服务器进行本地开发

使用pycharm连接远程解释器并运行和调试项目

2022-04-18 15:36:33 4638 3

原创 python开发【Flask】快速入门接口

快速入门python开发接口

2022-04-08 19:19:30 4723

原创 XGboost参数调优完整指南及预测分析(附完整代码)

XGBoost 的模型建立将主要依靠陈天奇的 XGBoost 类库,参数的调优主要基于 python sklearn 类库的网格搜索方法选择最优的超参数。导入所需要的库from xgboost import XGBRegressor as XGBRfrom sklearn.model_selection import KFold, cross_val_score as CVS, train_test_split as TTSimport matplotlib.pyplot as pltfro

2022-04-06 13:40:56 19106 8

原创 keras设置(自定义)学习率及优化器用法

目录默认学习率自定义学习率1. LearningRateScheduler参数代码2. ReduceLROnPlateau参数代码优化器的用法默认学习率搭建keras模型的时候,没有制定学习率,效果不是特别理想,查询了优化器的默认学习率:Adam是0.001,SGD是0.01在Keras的Adam优化器中各参数如下:keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon.

2022-03-23 11:49:51 13978 2

计算机网络——网络层思维导图

《计算机网络第七版》谢希仁网络层思维导图

2022-04-24

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除