- 博客(14)
- 资源 (1)
- 问答 (1)
- 收藏
- 关注
原创 keras中的早停机制EarlyStopping与回调函数ReduceLROnPlateau
ReduceLROnPlateau与EarlyStopping配合使用训练模型,会非常方便。
2022-11-19 11:35:52
2090
原创 CuDNNLSTM模型与LSTM模型(tensorflow-gpu的使用)
使用同一数据集,LSTM的耗时比CuDNNLSTM整整慢了8-10倍。
2022-11-19 11:19:52
3095
原创 单步预测与多步与预测的联系与区别
通常来说,时间序列预测描述的是在下一个时间步预测出的值,这被称为单步预测。但是有些情况下,预测任务需要预测出未来多个时间步的值,那这种情况就被称为多步预测。
2022-07-04 16:41:45
10073
7
原创 计算机博弈大赛详解
国内曾有人提出,国际象棋计算机程序已经可以战胜世界棋王卡斯帕罗夫,还有没有必要开展中国象棋计算机博弈方面的研究工作?中国象棋的计算机博弈难度决不在国际象棋之下。目前中国象棋、日本将棋和围棋已经成为计算机博弈领域新的挑战。......
2022-07-01 10:07:43
3578
原创 K-means与K-means++
目录K-means算法步骤K-Means++算法步骤K-means与K-means++区别K-means算法步骤1、随机初始化K个聚类中心2、计算每个样本与k个聚类中心的相似度,将样本划分到与之最相似的类中3、计算划分到每个类别中所有样本特征的均值,并将该均值作为每个类别新的聚类中心;4、重复2、3步操作,直至聚类中心不再改变,输出最终的聚类中心。K-Means++算法步骤K-Means++算法在初始化聚类中心时的基本原则是使聚类中心之间的相互距离尽可能的远,其初始过
2022-05-24 16:29:03
1672
原创 时间序列预测——LSTM模型(附代码实现)
长短时记忆网络( Long short-term memory,LSTM )是一种循环神经网络 (Recurrent neural network, RNN)的特殊变体。
2022-05-14 17:45:49
90223
45
原创 XGboost参数调优完整指南及预测分析(附完整代码)
XGBoost 的模型建立将主要依靠陈天奇的 XGBoost 类库,参数的调优主要基于 python sklearn 类库的网格搜索方法选择最优的超参数。导入所需要的库from xgboost import XGBRegressor as XGBRfrom sklearn.model_selection import KFold, cross_val_score as CVS, train_test_split as TTSimport matplotlib.pyplot as pltfro
2022-04-06 13:40:56
19106
8
原创 keras设置(自定义)学习率及优化器用法
目录默认学习率自定义学习率1. LearningRateScheduler参数代码2. ReduceLROnPlateau参数代码优化器的用法默认学习率搭建keras模型的时候,没有制定学习率,效果不是特别理想,查询了优化器的默认学习率:Adam是0.001,SGD是0.01在Keras的Adam优化器中各参数如下:keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon.
2022-03-23 11:49:51
13978
2
LSTM模型在测试集上的准确率高于训练集上的准确率
2022-04-28
TA创建的收藏夹 TA关注的收藏夹
TA关注的人