keras设置(自定义)学习率及优化器用法

目录

默认学习率

自定义学习率

1. LearningRateScheduler

参数

代码

2. ReduceLROnPlateau

参数

代码

 优化器的用法


默认学习率

搭建keras模型的时候,没有制定学习率,效果不是特别理想,查询了优化器的默认学习率:

Adam是0.001,SGD是0.01

在Keras的Adam优化器中各参数如下:

keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)

自定义学习率

自定义学习率可以通过回调函数实现。

1. LearningRateScheduler

参数

schedule:函数,该函数以epoch号为参数(从0算起的整数),返回一个新学习率(浮点数)

 代码

import keras.backend as K
from keras.callbacks import LearningRateScheduler
 
def scheduler(epoch):
    # 每隔100个epoch,学习率减小为原来的1/10
    if epoch % 100 == 0 and epoch != 0:
        lr = K.get_value(model.optimizer.lr)
        K.set_value(model.optimizer.lr, lr * 0.1)
        print("lr changed to {}".format(lr * 0.1))
    return K.get_value(model.optimizer.lr)
 
reduce_lr = LearningRateScheduler(scheduler)
model.fit(train_x, train_y, batch_size=32, epochs=300, callbacks=[reduce_lr])

2. ReduceLROnPlateau

keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, verbose=0, mode='auto', epsilon=0.0001, cooldown=0, min_lr=0)

当评价指标不在提升时,减少学习率

当学习停滞时,减少2倍或10倍的学习率常常能获得较好的效果。该回调函数检测指标的情况,如果在patience个epoch中看不到模型性能提升,则减少学习率

参数

  • monitor:被监测的量
  • factor:每次减少学习率的因子,学习率将以lr = lr*factor的形式被减少
  • patience:当patience个epoch过去而模型性能不提升时,学习率减少的动作会被触发
  • mode:‘auto’,‘min’,‘max’之一,在min模式下,如果检测值触发学习率减少。在max模式下,当检测值不再上升则触发学习率减少。
  • epsilon:阈值,用来确定是否进入检测值的“平原区”
  • cooldown:学习率减少后,会经过cooldown个epoch才重新进行正常操作
  • min_lr:学习率的下限

代码

from keras.callbacks import ReduceLROnPlateau
reduce_lr = ReduceLROnPlateau(monitor='val_loss', patience=10, mode='auto')
model.fit(train_x, train_y, batch_size=32, epochs=300, validation_split=0.1, callbacks=[reduce_lr])

 优化器的用法

可以先实例化一个优化器对象,然后将它传入 model.compile(),像下面代码一样

from keras import optimizers
 
model = Sequential()
model.add(Dense(64, kernel_initializer='uniform', input_shape=(10,)))
model.add(Activation('softmax'))
 
sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='mean_squared_error', optimizer=sgd)

或者可以通过名称来调用优化器,在这一种情况下,将使用优化器的默认参数。

model.compile(loss='mean_squared_error', optimizer='sgd')

### 如何在Keras设置学习率Keras中配置学习率可以通过多种方式实现,其中一种常见的方式是在编译模型时通过优化器参数来设定初始的学习率。对于不同的优化算法,可以指定`learning_rate`作为其初始化的一部分[^1]。 ```python from tensorflow.keras.optimizers import SGD model.compile(optimizer=SGD(learning_rate=0.01), loss='categorical_crossentropy', metrics=['accuracy']) ``` 除了静态定义学习率外,在训练过程中动态调整学习率也是一种有效策略。这通常借助于回调函数(Callback),特别是`LearningRateScheduler`或内置的衰减机制完成。例如,当采用时间基础衰减(`time-based decay`)时,可以在创建优化器实例的时候提供额外的参数如`decay`[^4]: ```python sgd = SGD(learning_rate=0.1, decay=0.001) model.compile(optimizer=sgd, loss='categorical_crossentropy') ``` 另一种方法是利用预设的时间间隔改变学习率,即所谓的分阶段下降(step decay),这种方法允许开发者自定义特定epoch点上的新学习率值[^3]。下面是一个简单的例子展示如何使用`LearningRateScheduler`来自定义学习率调度程序: ```python def step_decay(epoch): initial_lrate = 0.1 drop = 0.5 epochs_drop = 10.0 lrate = initial_lrate * math.pow(drop, math.floor((1+epoch)/epochs_drop)) return lrate lrate = tf.keras.callbacks.LearningRateScheduler(step_decay) history = model.fit(X_train, Y_train, validation_data=(X_test,Y_test), callbacks=[lrate], epochs=50, batch_size=64) ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值