Halcon应用之使用卡尺查找边缘点。

在对图像进行处理的工作中,边缘点的查找和计算是一项不可避免的过程,通过边缘点可以对图像进行各种维度的评价,尤其是在工业检测方面,更是必不可少的检测项目之一。本文主要介绍如何使用Halcon的卡尺算子进行边缘点集的查找,具体代码如下:

* 1. 图像读取与显示
read_image (Image, 'D:/image/表面7.bmp')
get_image_size (Image, Width, Height)
dev_open_window (0, 0, Width, Height, 'black', WindowHandle)
dev_display (Image)

* 2. 手动绘制初始ROI
draw_rectangle1 (WindowHandle, Row1, Column1, Row2, Column2)

* 3. 计算分割后的左右ROI
* 左侧ROI(将用于从右向左检测)
RowLeft1 := Row1
ColumnLeft1 := Column1
RowLeft2 := Row2
ColumnLeft2 := (Column1 + Column2)/2
CenterRowLeft := (RowLeft1 + RowLeft2)/2
CenterColLeft := (ColumnLeft1 + ColumnLeft2)/2

* 右侧ROI(将用于从左向右检测)
RowRight1 := Row1
ColumnRight1 := (Column1 + Column2)/2
RowRight2 := Row2
ColumnRight2 := Column2
CenterRowRight := (RowRight1 + RowRight2)/2
CenterColRight := (ColumnRight1 + ColumnRight2)/2

* 4. 公共测量参数    
Sigma := 1.0            
Min

<think>好的,我现在需要帮助用户在Halcon使用卡尺工具圆时设置参数以忽略边缘数。首先,我需要回想一下Halcon的相关工具和参数设置。根据用户提供的引用内容,CogFindCornerTool工具使用卡尺来定位构成界的,然后拟合直线到角。而圆的话,可能需要类似的卡尺方法,但目标变成拟合圆。 用户的问题是关于如何设置参数来忽略边缘数。这里的“忽略”可能指的是在拟合圆时排除一些不符合条件的边缘,比如离群或者噪声Halcon中的圆工具,比如基于卡尺的find_circle或使用边缘提取后拟合的方法,可能会有相关参数控制这一。 首先,我需要确定用户具体使用的是哪个Halcon工具。常见的圆方法有使用find_circle_contour_xld或者fit_circle_contour_xld。根据引用[2]提到的圆拟合函数是fit_circle_contour_xld,可能需要结合卡尺工具生成边缘,再进行拟合。 卡尺工具通常涉及设置卡尺的数量、卡尺的位置(半径范围、角度范围)、卡尺的宽度和高度等。例如,在查找圆时,可能会在多个角度方向上放置卡尺,每个卡尺内检测边缘,然后将这些用于拟合圆。 关于忽略边缘数的参数,可能需要考虑以下几: 1. **边缘数阈值**:如果某个卡尺内检测到的边缘太少,可能忽略该卡尺的数据。这可以通过设置最小边缘数参数来控制,比如MinNumPoints,如果某个卡尺到的数少于这个值,则跳过。 2. **边缘的选择方式**:每个卡尺可能检测到多个边缘,通常选择最强的一个。可以通过参数如EdgeSelect来设置选择第一个、最后一个还是最强边缘,这间接影响使用数。 3. **拟合时的权重或剔除机制**:拟合圆时,可能需要设置剔除离群的参数,比如迭代加权最小二乘法中的参数,或者使用RANSAC方法剔除不符合模型的Halcon的fit_circle_contour_xld可能有相关参数,如迭代次数、阈值等。 4. **卡尺的宽度和Sigma**:卡尺的宽度影响检测区域的大小,Sigma用于高斯滤波,影响边缘检测的灵敏度。调整这些参数可以减少噪声的检测,从而间接忽略不想要的边缘。 我需要查阅Halcon的文档确认具体参数。例如,fit_circle_contour_xld的参数包括Iteration、ClippingFactor等,可能影响拟合时的剔除。ClippingFactor用于排除偏离拟合圆一定距离的,多次迭代可以逐步剔除离群。 此外,用户提到的“忽略边缘数”可能是指希望即使某些卡尺没有到足够的,仍然继续拟合。这时需要设置MinNumPoints为一个较低的值,或者允许部分卡尺无效。或者,可能需要调整卡尺的位置和方向,确保覆盖有效的边缘区域。 总结可能的参数设置步骤: - 调整每个卡尺的参数,如Width、Sigma,确保准确检测到有效边缘。 - 设置EdgeSelect为'first'或'last',或者根据边缘幅度选择'most'。 - 在拟合圆时,使用ClippingFactor和Iteration参数来排除离群。 - 调整MinNumPoints,允许较少的有效卡尺参与拟合,但需注意过低的MinNumPoints可能导致拟合不准确。 需要验证这些参数是否在对应的Halcon工具中存在,例如在gen_circle_contours_xld或find_circle_contour_xld中。此外,可能还需要结合边缘幅度的阈值来过滤弱边缘,减少噪声的数量。 最后,根据用户提供的引用,CogFindCornerTool返回角是否存在和坐标,类似地,圆工具应返回圆心和半径,以及可能的拟合质量参数。因此,正确设置上述参数可以帮助忽略不需要的边缘,提高圆的准确性。</think>在Halcon使用卡尺工具圆时,忽略边缘数的参数设置需结合卡尺检测和拟合算法进行调整。以下是分步说明: ### 1. 卡尺工具参数设置 - **卡尺数量与分布** 使用`gen_circle_contour_xld`生成圆形轮廓,设置`NumPoints`参数控制卡尺数量。卡尺均匀分布在圆周上,数量过少可能导致边缘覆盖不全,过多会增加计算量。 - **单卡尺参数** - **Width**:卡尺宽度,决定检测区域横向范围,过宽可能包含干扰边缘,过窄可能漏检。 - **Height**:卡尺高度,决定检测区域纵向范围,通常与预期边缘宽度匹配。 - **Sigma**:高斯滤波系数,用于平滑图像,减少噪声影响。值越大,边缘检测越模糊,但抗噪性更强。 - **边缘筛选** - **Threshold**:边缘幅度阈值,低于此值的边缘会被忽略。例如:`set_find_circle_contour_xld_param(Threshold, 30)`。 - **EdgeSelect**:边缘选择模式,设为`'first'`(第一个边缘)、`'last'`(最后一个)或`'most'`(最强边缘)[^2]。 ### 2. 圆拟合参数调整 使用`fit_circle_contour_xld`时,通过以下参数控制离群剔除: - **Iteration**:迭代次数,多次迭代可逐步排除偏离拟合结果的。 - **ClippingFactor**:裁剪因子(如2.0),表示允许与拟合圆的最大偏差倍数,超出此值的会被忽略。 ### 3. 关键参数示例 ```python * 生成卡尺轮廓 gen_circle_contour_xld(Contour, CircleRow, CircleCol, Radius, 0, 6.28318, 'positive', 1) * 设置卡尺参数 set_find_circle_contour_xld_param(Threshold, 30) set_find_circle_contour_xld_param(EdgeSelect, 'most') * 拟合圆并忽略离群 fit_circle_contour_xld(Contour, 'algebraic', -1, 0, 0, 3, 2, Row, Column, Radius, StartPhi, EndPhi, PointOrder) ``` ### 4. 注意事项 - **MinNumPoints**:设置最小有效数,若有效卡尺数低于此值,拟合失败。需根据实际情况调整。 - **边缘干扰**:通过`Sigma`和`Threshold`抑制噪声,避免无效边缘被选中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值