Gcd && LCM 问题--------stien算法和辗转相除法

题目描述及问题分析

		已知两位整数m,n,求其最大公约数和最小公倍数

*(解决这类问题的方法有很多,在这里重点总结效率最高的栈转相除法)

  				以m = 12 , n = 16为例
   						m 	 n 
   						12 	16
  第一步:   ---------------------------gcd(12,16);
  	 t = 12%16 == 12;
  	 m = 16;
     n = 12;	
     
  第二步:  --------------------------gcd(16,12)  ---->gcd(16,12%16);
  	t = 16%12 == 4; 			
  	m = 12;
    n = 4;

  第三步: -------------------------gcd(12,4) ------->gcd(12,16%12);
  	t = 12%4 == 0; 
  	m = 4; 
  	n = 0;

这里演示了辗转相除法的原理,给了几个重要信息:
1.出循环的条件: n == 0;-------------取余分母为0无意义
2.最终的gcd == m;
这个也是递归调用的出递归的条件,即递归出口

循环

int gcd( int m , int n) {
	while(n) { //为分母
		int t = m%n;
		m = n;
		n = t;
	}
	return m;  //为分子
}

递归

基于辗转相除的特性,我们可以用递归来解决该问题,简单明了 每一步的处理形式都形同,通过规律可知下一步为:gcd(n,m%n)

int gcd( int m , int n ) {
	return n == 0 ? m : gcd( n , m%n );
	//当n == 0 时,递归结束

主函数:

int main() {
	int m,n;
	cin>>m>>n;
	cout<<"最大公约数: "<<gcd(m,n)<<endl;
	cout<<"最小公倍数: "<<(m*n)/gcd(m,n);
	//最大公约数 * 最小公倍数 == m*n;
	return 0;
}

c++中STL中的__gcd(x,y)函数

#include <bits/stdc++.h>
#include <algorithm>//其函数在这个库里面
using namespace std;
int main() {
	int m,n;
	cin>>m>>n;
	cout<<"最大公约数: "<<__gcd(m,n)<<endl;  //两者的数据类型要相同
	cout<<"最小公倍数: "<<(m*n)/__gcd(m,n);
	return 0;
}

位运算

inline int gcd(int a,int b) 
{    
    if(b) while((a%=b) && (b%=a));    
    return a+b;
}

stein算法(处理超过64位的整数)

代码:

int SteinGcd ( int m, int n ) {
	if(!min(n,n))//最小为0输出最大,递归出口,两种方法都是这个条件
		return max(m,n);//多种情况,这个单独写,用三目运算符反而麻烦
	if(!(m%2) && !(n%2))//m和n都为偶数
		return 2*SteinGcd (m/2,n/2);
	if(!(m%2))//m为偶数
		return SteinGcd (m/2,n);
	if(!(n%2))//n为偶数
		return SteinGcd (m,n/2);
	return SteinGcd ((m+n)/2,abs(m-n)/2);//m和n都为奇数
}

①递归出口: 最小为0输出最大
分析m,n均不为0的情况
m n , n n m_n,n_n mn,nn为偶数
m n + 1 = m n / 2 m_{n+1}=m_n/2 mn+1=mn/2
n n + 1 = n n / 2 n_{n+1}=n_n/2 nn+1=nn/2
SteinGcd是返回的数据 S t e i n G c d n + 1 = S t e i n G c d n ∗ 2 SteinGcd_{n+1} = SteinGcd_n*2 SteinGcdn+1=SteinGcdn2

m n , m_n, mn,为偶数
m n + 1 = m n / 2 m_{n+1}=m_n/2 mn+1=mn/2
n n + 1 = n n n_{n+1}=n_n nn+1=nn
SteinGcd是返回的数据 S t e i n G c d n + 1 = S t e i n G c d n SteinGcd_{n+1} = SteinGcd_n SteinGcdn+1=SteinGcdn

n n , n_n, nn,为偶数
m n + 1 = m n m_{n+1}=m_n mn+1=mn
n n + 1 = n n / 2 n_{n+1}=n_n/2 nn+1=nn/2
SteinGcd是返回的数据 S t e i n G c d n + 1 = S t e i n G c d n SteinGcd_{n+1} = SteinGcd_n SteinGcdn+1=SteinGcdn

⑤② m n , n n m_n,n_n mn,nn为奇数
m n + 1 = ∣ n n − m n ∣ m_{n+1}=|n_n-m_n| mn+1=nnmn
n n + 1 = m i n ( n n , m n ) n_{n+1}=min(n_n,m_n) nn+1=min(nn,mn)
SteinGcd是返回的数据 S t e i n G c d n + 1 = S t e i n G c d n SteinGcd_{n+1} = SteinGcd_n SteinGcdn+1=SteinGcdn

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值