题目
从 1∼n1∼n 这 nn 个整数中随机选取任意多个,输出所有可能的选择方案。
输入格式
输入一个整数 nn。
输出格式
每行输出一种方案。
同一行内的数必须升序排列,相邻两个数用恰好 11 个空格隔开。
对于没有选任何数的方案,输出空行。
本题有自定义校验器(SPJ),各行(不同方案)之间的顺序任意。
输入样例
3
输出样例
3
2
2 3
1
1 3
1 2
1 2 3
思路
从第一个位置开始选择,每个数字都有选择和不选择两种情况,选择完后,再跳到下一个位置继续选择,如果当前位置超过了数字所在位置的最大值,那么就终止递归,并且按照已经选择的数字进行打印输出
Q:如何表示目前所在位置?
A:通过变量u来表示当前所处的位置
Q:如何跳到下一个位置?
A:通过使u+1,并递归调用方法来表示跳到下一个位置进行判断
Q:如何记录当前位置是否选择?
A:通过数组来记录
Q:什么叫恢复现场?
A:根据递归二叉树可知,递归的调用顺序是中序遍历,左根右,根代表当前位置,左和右代表的是下一个位置,从左回到根时,需要撤销在左节点进行的操作,防止干扰下一个位置
代码
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] arr = new int[n+1]; //记录状态,0表示没考虑,1表示选,2表示不选 f(1,n,arr); } static void f(int u,int n,int[] arr){ //u为当前所处的位置,n为数字的个数 //当前位置大于总数字个数 if(u > n){ for(int i = 1; i <= n; i++){ if(arr[i] == 1) System.out.print(i + " "); } System.out.println(); return; } //当前位置的数选 arr[u] = 1; f(u+1,n,arr); //恢复现场 arr[u] = 0; //当前位置的数不选 arr[u] = 2; f(u+1,n,arr); //恢复现场 arr[u] = 0; } }
总结
可以用画递归二叉树的方法来判断递归的调用过程