DFS-1-递归实现指数型枚举

该博客介绍了如何利用深度优先搜索(DFS)和递归方式,解决从1到n的整数中选择多个数字的所有可能组合问题。博主通过详细解释思路,包括设置当前位置变量、递归跳转、记录选择状态和恢复现场的概念,以及绘制递归二叉树帮助理解,最后展示了相应的Java代码实现。
摘要由CSDN通过智能技术生成

题目

从 1∼n1∼n 这 nn 个整数中随机选取任意多个,输出所有可能的选择方案。

输入格式

输入一个整数 nn。

输出格式

每行输出一种方案。

同一行内的数必须升序排列,相邻两个数用恰好 11 个空格隔开。

对于没有选任何数的方案,输出空行。

本题有自定义校验器(SPJ),各行(不同方案)之间的顺序任意。

输入样例

3

输出样例

3
2
2 3
1
1 3
1 2
1 2 3

思路

从第一个位置开始选择,每个数字都有选择和不选择两种情况,选择完后,再跳到下一个位置继续选择,如果当前位置超过了数字所在位置的最大值,那么就终止递归,并且按照已经选择的数字进行打印输出

Q:如何表示目前所在位置?

A:通过变量u来表示当前所处的位置

Q:如何跳到下一个位置?

A:通过使u+1,并递归调用方法来表示跳到下一个位置进行判断

Q:如何记录当前位置是否选择?

A:通过数组来记录
 

Q:什么叫恢复现场?

A:根据递归二叉树可知,递归的调用顺序是中序遍历,左根右,根代表当前位置,左和右代表的是下一个位置,从左回到根时,需要撤销在左节点进行的操作,防止干扰下一个位置

代码

import java.util.Scanner;

public class Main {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int n = sc.nextInt();
        int[] arr = new int[n+1]; //记录状态,0表示没考虑,1表示选,2表示不选
        f(1,n,arr);
    }
    static void f(int u,int n,int[] arr){ //u为当前所处的位置,n为数字的个数
        //当前位置大于总数字个数
        if(u > n){
            for(int i = 1; i <= n; i++){
                if(arr[i] == 1)
                System.out.print(i + " ");
            }
            System.out.println();
            return;
        }
        //当前位置的数选
        arr[u] = 1;
        f(u+1,n,arr);
        //恢复现场
        arr[u] = 0;
        //当前位置的数不选
        arr[u] = 2;
        f(u+1,n,arr);
        //恢复现场
        arr[u] = 0;
    }
}

总结

 可以用画递归二叉树的方法来判断递归的调用过程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值