题目来源:
题目内容:
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。
-
例如,
[1, 7, 4, 9, 2, 5]
是一个 摆动序列 ,因为差值(6, -3, 5, -7, 3)
是正负交替出现的。 -
相反,
[1, 4, 7, 2, 5]
和[1, 7, 4, 5, 5]
不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。
给你一个整数数组 nums
,返回 nums
中作为 摆动序列 的 最长子序列的长度
示例 1:
输入:nums = [1,7,4,9,2,5]
输出:6
解释:整个序列均为摆动序列,各元素之间的差值为 (6, -3, 5, -7, 3) 。示例 2:
输入:nums = [1,17,5,10,13,15,10,5,16,8]
输出:7
解释:这个序列包含几个长度为 7 摆动序列。
其中一个是 [1, 17, 10, 13, 10, 16, 8] ,各元素之间的差值为 (16, -7, 3, -3, 6, -8) 。示例 3:
输入:nums = [1,2,3,4,5,6,7,8,9]
输出:2
思路分析:
贪心算法:(也可以用动态规划来做)
题解来源(视频讲解):贪心算法,寻找摆动有细节!| LeetCode:376.摆动序列_哔哩哔哩_bilibili
(大家可以去B站关注这个宝藏博主!)
分三种情况(很难一次性全部想到):
-
情况⼀:上下坡中有平坡
-
情况⼆:数组⾸尾两端
-
情况三:单调坡度有平坡
-
废话不多说,上图!(这里也是借用上面那个宝藏博主的图片)
-
情况一:上下坡中有平坡
-
情况⼆:数组⾸尾两端
-
情况三:单调坡度有平坡
代码实现:
class Solution {
public:
int wiggleMaxLength(vector<int>& nums) {
if(nums.size()<=1) return nums.size();
int nowDiff=0;//当前一对差值
int preDiff=0;//前一对差值
int result=1;//记录峰值个数,默认序列最右边有一个
for(int i=0;i<nums.size()-1;i++){
nowDiff=nums[i+1]-nums[i];
//出现峰值.(峰值就是满足条件的情况)
if((preDiff<=0&&nowDiff>0)||(preDiff>=0&&nowDiff<0)){
result++;
preDiff=nowDiff;
}
}
return result;
}
};
题目心得:
- 不知你是否遇到过这样一种情况,面对冗长的思路分析,觉得无从下手/看不进去
- 推荐你先去照着敲一遍代码(过程中大脑会自动的试着去理解)然后再去看思路分析,对题目有了整体的把握之后再去进行总结