Google Kickstart. 能量石(推公式 + 0-1背包)


题目描述

岩石怪物杜达生活在魔法森林中,他在午餐时收集了 N N N 块能量石准备开吃。

由于他的嘴很小,所以一次只能吃一块能量石。

能量石很硬,吃完需要花不少时间。

吃完第 i i i 块能量石需要花费的时间为 S i S_i Si 秒。

杜达靠吃能量石来获取能量。

不同的能量石包含的能量可能不同。

此外,能量石会随着时间流逝逐渐失去能量。

第 i 块能量石最初包含 E i E_i Ei 单位的能量,并且每秒将失去 L i L_i Li 单位的能量。

当杜达开始吃一块能量石时,他就会立即获得该能量石所含的全部能量(无论实际吃完该石头需要多少时间)。

能量石中包含的能量最多降低至 0。

请问杜达通过吃能量石可以获得的最大能量是多少?

输入格式
第一行包含整数 T T T,表示共有 T T T 组测试数据。

每组数据第一行包含整数 N N N,表示能量石的数量。

接下来 N N N 行,每行包含三个整数 S i , E i , L i S_i,E_i,L_i Si,Ei,Li

输出格式
每组数据输出一个结果,每个结果占一行。

结果表示为 Case #x: y,其中 x x x 是组别编号(从 1 开始), y y y 是可以获得的最大能量值。

数据范围
1 ≤ T ≤ 10 , 1≤T≤10, 1T10,
1 ≤ N ≤ 100 , 1≤N≤100, 1N100,
1 ≤ S i ≤ 100 , 1≤S_i≤100, 1Si100,
1 ≤ E i ≤ 1 0 5 , 1≤E_i≤10^5, 1Ei105,
0 ≤ L i ≤ 1 0 5 0≤L_i≤10^5 0Li105

输入样例:

3
4
20 10 1
5 30 5
100 30 1
5 80 60
3
10 4 1000
10 3 1000
10 8 1000
2
12 300 50
5 200 0

输出样例:

Case #1: 105
Case #2: 8
Case #3: 500

样例解释
在样例#1中,有 N = 4 N=4 N=4 个宝石。杜达可以选择的一个吃石头顺序是:

  • 吃第四块石头。这需要 5 秒,并给他 80 单位的能量。
  • 吃第二块石头。这需要 5 秒,并给他 5 单位的能量(第二块石头开始时具有 30 单位能量,5 秒后失去了 25 单位的能量)。
  • 吃第三块石头。这需要 100 秒,并给他 20 单位的能量(第三块石头开始时具有 30 单位能量,10 秒后失去了 10 单位的能量)。
  • 吃第一块石头。这需要 20 秒,并给他 0 单位的能量(第一块石头以 10 单位能量开始,110 秒后已经失去了所有的能量)。

他一共获得了 105 单位的能量,这是能获得的最大值,所以答案是 105

在样本案例#2中,有 N=3 个宝石。

无论杜达选择吃哪块石头,剩下的两个石头的能量都会耗光。

所以他应该吃第三块石头,给他提供 8 单位的能量。

在样本案例#3中,有 N=2 个宝石。杜达可以:

  • 吃第一块石头。这需要 12 秒,并给他 300 单位的能量。
  • 吃第二块石头。这需要 5 秒,并给他 200 单位的能量(第二块石头随着时间的推移不会失去任何能量!)。

所以答案是 500


贪心 + 公式

如果说这题要用0-1背包的规划方法来做,那乍一看似乎并没有 “体积” 这一属性,实际上可以发现,吃掉能量石的时间正是“体积”,对应地,吃掉所有能量石的时间也就是背包的容量 M m a x M_{max} Mmax,而这个问题也就转变成了在 固定的 M m a x M_{max} Mmax的时间 里,找到一个 吃能量石时间的先后顺序 的方案使得获取的能量值最高。

而根据题意,可以先考虑任意两个相邻的能量石 i i i i + 1 i + 1 i+1,不妨比较一下两种吃它们的顺序带来的能量值:

  • 先吃 i i i:能量值1 = E i + E i + 1 − S i × L i + 1 E_i +E_{i + 1}-S_i×L_{i +1} Ei+Ei+1Si×Li+1
  • 先吃 i + 1 i+1 i+1:能量值2 = E i + 1 + E i − S i + 1 × L i E_{i + 1} + E_i-S_{i+1}×L_i Ei+1+EiSi+1×Li

而我们并不知道能量值1和能量值2哪个更大,所以不妨

令能量值1>能量值2(其实也可以反着令,只要下标对应好),那么可以得到结论: S i × L i + 1 < S i + 1 × L i S_i×L_{i +1}<S_{i+1}×L_i Si×Li+1<Si+1×Li。进一步地,即: S i / L i < S i + 1 / L i + 1 S_i/L_i<S_{i+1}/L_{i +1} Si/Li<Si+1/Li+1

这个不等式有什么用呢?其实推广来讲,对于能量石 i i i i + 1 i+1 i+1,我们如果是按照次序xxxi、i+1xxxx来吃,获得能量值1,而按照次序xxxi+1、ixxxx来吃,获得能量值2,由于已经令过能量值1>能量值2,那肯定是按照前者次序吃获得的收益更大,对于所有相邻物品都按照这个思路贪心地排列着吃就可以得到那个最优的方案,而如何保障吃能量石的次序是按照这个思路排列的,这就是要以不等式为依据,进行sort一遍。

sort之后,便是0-1背包的思路对每个能量石规划后找到最大价值。

状态转移计算:
f ( i , j ) = m a x ( f ( i − 1 , j ) [ 不 吃 能 量 石 i ] , f ( i − 1 , j − S i ) + E i − ( j − S i ) × L i [ 吃 能 量 石 i , 由 于 吃 了 S i 单 位 时 间 才 到 达 现 在 的 j 时 刻 , 说 明 该 石 会 衰 减 ( j − S i ) × L i 能 量 值 ] ) f(i,j)=max(f(i-1,j)[不吃能量石i],f(i-1,j-S_i)+E_i-(j-S_i)×L_i[吃能量石i,由于吃了S_i单位时间才到达现在的j时刻,说明该石会衰减(j-S_i)×L_i能量值]) f(i,j)=max(f(i1,j)[i],f(i1,jSi)+Ei(jSi)×Li[iSij(jSi)×Li])

注意这里f[j]表示的是容量恰好j,所以需要有memset(f, -0x3f, sizeof f);这一步。


C++代码

#include <iostream>
#include <cstring>
#include <algorithm>
#define INF 0x3f
using namespace std;

const int M = 110, N = 1e5 + 10;
struct Stone{
    int s, e, l;
    
    bool operator< (const Stone &t) const{
        return s * t.l < t.s * l;       //等效于Si / Li < Si+1 / Li+1,乘法取缔为了防止除0
    }
}stone[M];

int T, n, m;
int f[N];

int Helper(int m){
    memset(f, -INF, sizeof f);
    f[0] = 0;
    sort(stone, stone + n);
    
    for(int i = 0;i < n;i ++){       //0 - 1模板
        int S = stone[i].s, E = stone[i].e, L = stone[i].l;
        for(int j = m;j >= S;j --)
            f[j] = max(f[j], f[j - S] + E - (j - S) * L);
    }
    
    int ans = 0;
    for(int i = 0;i <= m;i ++)      ans = max(ans, f[i]);       //枚举以下各个时间状态下的最优
    return ans;
}

int main(){
    ios :: sync_with_stdio(false);
    cin >> T;
    for(int i = 1;i <= T;i ++){
        cin >> n;
        m = 0;
        for(int j = 0;j < n;j ++){
            int s, e, l;
            cin >> s >> e >> l;
            stone[j].s = s, stone[j].e = e, stone[j].l = l;
            m += s;
        }
        
        printf("Case #%d: %d\n", i, Helper(m));
    }
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值