精华Python小课 3天零基础入门(3)

这篇博客介绍了Python中的Numpy库,包括Ndarray的生成和查看、向量矩阵的生成、随机数操作、矩阵运算及形变、拼接等基础知识。还展示了如何进行向量和矩阵的索引以及使用Numpy进行科学计算,如矩阵乘法、最大值、最小值、平均值和标准差的计算。此外,还通过示例演示了数值解法在求解方程中的应用。
摘要由CSDN通过智能技术生成

Ndarray的生成和查看

在这里插入图片描述

import numpy as np

a = np.array([1, 2, 3, 4]) # 一维向量(4,)
b = np.array([[1, 2, 3], [4, 5, 6]]) # 二维矩阵(2, 3)
c = np.array([[1.2, 2.4], [3.4, 4.5]]) # 二维浮点数矩阵(2, 2)
d = np.array([[1, 2, 3, 4]]) # (1, 4)
e = np.array([[[1], [2], [3], [4]]]) # (4, 1)

print(a.size) # 查看ndarray的元素个数
print(a.shape) # 查看ndarray的形状
print(a.ndim) # 查看ndarray的维度

向量和矩阵的生成和numpy随机数

在这里插入图片描述

# numpy的广播机制
import numpy as np

m = np.random.randn(3, 3) # 生成一个符合高斯分布的3x3的矩阵
m = m + 1 # 由于广播机制的存在,这条表达式会使得m中每一个元素都加上1
m = m * 5 # 同理,这条表达式会使得m中每一个元素都乘上1

矩阵的运算,形变和拼接

在这里插入图片描述

向量和矩阵的索引

在这里插入图片描述

Numpy科学计算方法

在这里插入图片描述

作业

1.创建一个10*10的ndarray对象,且矩阵边界全为1,里面全为0

import numpy as np

a = np.zeros((8, 8))
b = np.ones((8, 1))
c = np.ones((1, 10))
m = np.hstack([b, a])
m = np.hstack([m, b])
m = np.vstack([c, m])
m = np.vstack([m, c])

print(m)

2.创建一个5X3随机矩阵和一个3X2随机矩阵,求矩阵积以及其最大值,最小值,平均值和标准差

import numpy as np

m_5_3 = np.random.randn(5, 3)
m_3_2 = np.random.randn(3, 2)

m = np.dot(m_5_3, m_3_2)
m_max = np.max(m)
m_min = np.min(m)
m_mean = np.mean(m)
m_std = np.std(m)

3、y=x^exp(x/3),如果y=10,求解x,(用数值法求解)

import numpy as np

x = np.linspace(0, 10, 1000)
y = x ** np.exp(x / 3)
diff = abs(y - 10)
x = x[np.argmin(diff)]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值