RealNet:一种具有真实合成异常的特征选择网络用于异常检测

文章链接:点这里
源码链接:点这里
研究目的
针对自监督特征重建方法在合成真实和多样化异常样本方面的不足,以及解决预训练特征的冗余和预训练偏差问题。提出RealNet框架,一个具有真实合成异常和自适应特征选择的特征重建网络,通过三个关键创新点提高异常检测性能,同时控制计算成本。
研究方法

SDAS是一种基于扩散过程的合成策略,通过控制扰动强度能生成具有不同异常强度的样本,以模拟真实异常样本的分布。首先仅使用正常图像训练一个扩散模型,在逆扩散过程中,加入扰动方差