RealNet: A Feature Selection Network with Realistic Synthetic Anomaly for Anomaly Detection

RealNet:一种具有真实合成异常的特征选择网络用于异常检测

文章链接:点这里

源码链接:点这里 

研究目的

针对自监督特征重建方法在合成真实和多样化异常样本方面的不足,以及解决预训练特征的冗余和预训练偏差问题。提出RealNet框架,一个具有真实合成异常和自适应特征选择的特征重建网络,通过三个关键创新点提高异常检测性能,同时控制计算成本。

研究方法

  • 可控强度的扩散异常合成(SDAS)

SDAS是一种基于扩散过程的合成策略,通过控制扰动强度能生成具有不同异常强度的样本,以模拟真实异常样本的分布。首先仅使用正常图像训练一个扩散模型,在逆扩散过程中,加入扰动方差

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值