摘 要: 风电场运行中产生了数量巨大的历史数据,而提升历史数据的质量是实现风电场高效智能运维的前提。为此,文中分析了风电场风功率数据的分布特征和形成机理,提出基于方差变化率判据-四分位法组合的风电场风 功率异常数据识别方法。首先,利用物理规则对原始风功率曲线进行预处理,剔除明显异常的数据; 然后,利用风 功率方差变化率判据法识别并清洗风功率曲线的堆积型异常功率数据点,判据的阈值借助箱型图自动获取; 同时, 利用四分位法识别并清洗剩余的离散型异常数据点; 最后,通过算例验证了所提算法的可行性。
Ⅰ. 风功率的异常数据识别算法
1. 物理规则的数据预处理
2. 风功率方差变化率判据法
3. 四分位法
4. 风功率异常数据识别流程
Ⅱ. 异常数据识别算例分析
图1 风电场风功率散点
图2 基于物理规则的异常数据识别
图3 不同风速区间的风功率及其方差变化率
图4 基于方差变化率的异常数据识别
图5 风功率方差二次变化率曲线及异常识别结果
图6 风电场风功率的异常数据识别
部分源代码:
完整代码见👇
https://mbd.pub/o/bread/mbd-ZpWalZhr
%% 清空工作区
clear all;
clc;
close all
format long;
%% 读取数据
[num,text,raw]=xlsread('Data_2016.xlsx');
figure(1)
plot(num(:,1),num(:,3),'bo')%初始状态
xlabel('风速/(m*s^{-1})');
ylabel('功率/kW');
box off
xlim([-5 25]);
ylim([-500 3000]);
pictureSize=[100,100,1000,650];%图的位置
set(gcf,'Position',pictureSize)
%% 物理规则的数据预处理
m1=find(num(:,1)<0);
num(m1,:)=[];%删除负风速的数据行
m2=find(num(:,3)<5);
num(m2,:)=[];%删除停机点
m3=find(num(:,1)<0.5);
num(m3,:)=[];%删除风速小于0.5m/s
m4=find(isnan(num(:,1))==1);%判断数据是否含有NaN,直接删除
num(m4,:)=[];
m5=find(isnan(num(:,3))==1);%判断数据是否含有NaN,直接删除
num(m5,:)=[];
m6=find(num(:,1)>20);%将大于切出速度的风速删除
num(m6,:)=[];
figure(2)
plot(num(:,1),num(:,3),'bo')%物理规则的数据预处理后
xlabel('风速/(m*s^{-1})');
ylabel('功率/kW');
box off
xlim([-5 25]);
ylim([-500 3000]);
pictureSize=[100,100,1000,650];%图的位置
set(gcf,'Position',pictureSize)
Ⅲ.结论
文中针对风电场的风功率运行数据,先利用物 理规则对数据集进行预处理,剔除一些明显异常的 数据点。在此基础上,利用风功率方差变化率判据 和四分位的组合方法来自动识别剩余的堆积型和 离散型异常数据点,主要结论如下:
(1) 所提出的基于方差变化率判据-四分位的 风功率异常数据识别算法可以同时识别风电场的 停机、弃风限电、风功率曲线左上方的堆积型和周 围的其他离散型等异常点。
(2) 所提的基于方差变化率判据-四分位的风 功率异常识别算法利用箱型图自动选取每个风速 子区间的判据阈值,克服了人为设置阈值过程漫长 和整个风速区间采用固定阈值效果不佳等问题。
Ⅳ.参考文献
[1]吴永斌,张建忠,邓富金,等.基于方差变化率判据-四分位的风电场功率异常数据识别[J].电力工程技术,2023,42(04):141-148.
本文内容来源于网络,仅供参考学习,如内容、图片有任何版权问题,请联系处理,24小时内删除。