- 博客(26)
- 收藏
- 关注
原创 机器学习 [白板推导](六)[核方法、指数族分布]
核:若存在函数KKK使得KX×X→RKX×X→R,其中XXX为特征空间,R\mathbb{R}R为全体实数域,则称KKK为核函数。正定核:对于一个核函数KKK,若存在非线性变换ϕx⃗ϕxϕx⃗ϕx属于希尔伯特空间,希尔伯特空间指完备的、可能是无限维的、被赋予内积的线性空间),使得Kx⃗ix⃗j≡ϕx⃗iTϕx⃗jKxixj≡ϕxiTϕxj。
2025-06-12 17:17:50
345
原创 机器学习 [白板推导](五)[支持向量机]
之前的分类算法中,模型致力于寻找一个超平面,可以将训练集中的两类样本分开,但这个超平面理论上存在无数个,它们在训练集上的分类效果可能是相同的,但模型的鲁棒性是不同的,为了寻找最鲁棒的模型,SVM便想要寻找一个所有样本总间隔最大的超平面。 首先定义间隔:假设通过一个超平面 f(x⃗)=sign(w⃗Tx⃗+b)f(\vec{x})=sign\left (\vec{w}^T\vec{x}+b \right )f(x)=sign(wTx+b),可以完美拟合训练集所有样本,即对任意样本 iii,都有 yi
2025-06-12 16:53:55
867
原创 机器学习 [白板推导](四)[降维]
通常模型通过训练集数据进行训练,若其测试集的效果明显低于训练集,这是一种不理想的效果,称为过拟合。 过拟合常采用三种方法应对: 从几何角度,若一组数据的特征维度是2,假设两个特征的值都是有上界的,则其构成的样本空间近似一个正方(长)形,数据在这个样本空间中分布。 现在要对这组数据进行分类任务,模型映射到样本空间中变成了一条分隔线,将两个类别的样本分隔到了线的两边。 为了便于从几何角度直观理解维数灾难,我们假设现在的模型分割线是一个圆,则这个分类模型的示意图如下: 将两个特征归一化,
2025-06-08 19:35:48
903
原创 机器学习 [白板推导](三)[线性分类]
,y)概率判别模型:逻辑回归,主要建模的是 p(y∣x⃗)p(y|\vec{x})p(y∣x)4.2. 感知机4.2.1. 基本模型 模型:f(x⃗^)=sign(x⃗^TW),sign(a)={1,a>00,a=0−1,a<0.(4.1)\begin{aligned}f(\hat{\vec{x}})=\text{sign}(\hat{\vec{x}}^TW),\\ \text{sign}(a)=\left\{\begin{matrix}1,&a>0\\0,&a=0\\-1,&a<0\e
2025-03-16 19:52:51
803
1
原创 机器学习 [白板推导](二)[线性回归]
假设两个变量x⃗\vec{x}x和yyy之间存在线性关系(例如yw⃗Tx⃗bywTxb),如何利用数据Datax⃗iyii1NData{(xiyii1N拟合出这个线性关系,使得可以对新的样本x⃗N1xN1回归得到其对应的yN1y_{N+1}yN1为了便于推导,将样本表示为增广自变量矩阵XN×p1x⃗1x⃗2⋯x⃗nT1x⃗11x⃗2。
2025-03-14 16:45:16
713
原创 机器学习 [白板推导](N)[谱聚类、前馈神经网络]
将数据集DataXN×px⃗1⋯x⃗NTDataXN×px1⋯xNTGVEVv⃗i其中v⃗i↔x⃗iEWwij1⩽ij⩽N(21.1)V&=\{\vec{v}_i\}, &其中 \vec{v}_i\leftrightarrow \vec{x}_i, \\GVEVEviWwij其中vi↔xi1⩽ij⩽N。
2025-03-14 16:42:50
952
原创 机器学习 [白板推导](一)[绪论、高斯分布]
开个文章补一下白版推导吧,现在回过头来看这些都还是挺有用的,不把数学底层逻辑理清总有一种学了又好像没学的感觉。 建模方法:概率派将模型参数 θ\thetaθ 视为一个常量,样本 XN×pX_{N\times p}XN×p 是一个随机变量,使用极大似然估计(Maximum Likelihood Estimate,MLE)方法建模求得 的解,即θMLE=arg maxθlog[P(X∣θ)],(1.1)\theta _{MLE}=\argmax_{\theta}\log[P(X|\theta )
2025-03-12 20:06:47
970
原创 Exploring the Latest Advances (Blog for Academic Talks)
This blog serves as a collection of academic talks and seminars I have attended throughout my research journey.The purpose is to record key takeaways, insights, and reflections from each session, providing a resource for myself and others interested in the
2025-02-13 19:36:11
890
原创 常用命令记录(含git/ssh/linux)
克隆远程项目到本地查看当前版本改动信息git status添加被改动(增删改)的文件到缓存添加当前版本库到本地仓库查看远程仓库提交代码到远程仓库git push。
2024-04-04 00:15:45
314
1
原创 生成模型学习笔记(二)
之后有可能要从事生成类模型的研究和应用,在这里记录一下学习笔记和心得。3. 扩散模型(Diffusion Model)3.1 扩散模型原理 扩散模型是对一系列隐变量进行建模的模型,即 pθ(x0:T)p_{\theta}(x_{0:T})pθ(x0:T),其中 θ\thetaθ 是模型参数,x0x_0x0是真实数据,x1:Tx_{1:T}x1:T 是隐变量。隐变量都是由真实数据 x0x_0x0 进行逐步地扩散而来,这个过程表示为前向过程(forward process)或扩散过程(di
2024-04-03 17:14:12
1513
1
原创 深度强化学习(二)
这里是深度强化学习的个人笔记,目前资料来源:蘑菇书 、Reinforce Learning:An Introduction、动手学强化学习。
2024-03-12 17:04:19
1837
1
原创 深度强化学习(一)
这里是深度强化学习的个人笔记,目前资料来源:蘑菇书 、Reinforce Learning:An Introduction、动手学强化学习。
2024-03-04 12:01:47
1232
1
原创 生成式AI
为了增强图片生成效果,采用一种加噪(前向过程)+降噪(反向过程)的方法,对样本图片进行加噪处理,并使其噪声逐渐满足高斯分布,再学习降噪方法,将样本图片还原,这样让模型掌握利用一定的随机噪音来完成高质量图片生成能力;模型需要学习到的实际上是能力;此处的应当是一个分布而不是一个具体的样本,由推得的一系列分布,可以使模型的生成效果更加多元化。
2023-06-30 19:20:01
343
原创 自然语言处理
1. 自然语言处理任务1.1. 语言的特点词汇量大、特征多、类别多 语义信息丰富且隐晦,同义词、近义词、反语等 语言之间有差异性1.2. 自然语言处理 vs 语音识别语音识别是把声学信号和文字进行相互转换 自然语言处理更多是对文本进行处理,属于一个应用领域,主要任务包括文本分类、关键词提取、机器翻译、阅读理解等1.3. 传统自然语言处理的思想自然语言处理的本质是计算一句话是正常表达的概率 对一句话的研究首先需要分词——中文分词用jieba库 贝叶斯公式:,进一步推导可得:,在自
2023-06-22 04:08:12
498
1
原创 计算机视觉
开个坑,记录一下计算机视觉学习笔记与心得。非科班ai硕士,不是cv方向但是打算也好好学习一下CV领域的经典架构与方法,拓宽思维同时也为日后就业留条路。2023.04.12。
2023-04-13 01:25:40
365
原创 图神经网络GNN
开个新栏,GNN,早就应该学了,在我的研究方向这个用的还是比较多的意外发现b大的同济子豪兄用中文精讲CS224W图机器学习图神经网络课程,本科校友大佬啊,似乎讲的比较通俗:中文论文阅读讨论社区:知识图谱专家,github中有很多各行各业的知识图谱开源项目:开源项目和开源企业的影响力排行榜2023.4.8。
2023-04-08 23:51:49
530
原创 LeetCode刷题记录
正在刷LeetCode Hot 100,使用的语言是Python3,发现有很多思路值得学习,想开个新栏目记录一下,方便回顾。
2023-04-05 21:34:46
203
1
原创 计算机网络
非科班ai硕士,来补补cs基础,由于专业方向的原因比较着急先补计算机网络,就用王道的课吧,因为我自己考研时期是提升最快的时候,所以我感觉考研课程通过比较应试的方法可以push我最快掌握一门知识
2023-03-27 23:20:27
656
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人