🐇明明跟你说过:个人主页
🏅个人专栏:《大数据前沿:技术与应用并进》🏅
🔖行路有良友,便是天堂🔖
目录
3、大数据概念的提出与技术体系的形成(2000s-2010s)
一、引言
1、什么是大数据
大数据(Big Data)是指无法通过传统的数据处理技术和工具在合理的时间范围内高效处理、存储和分析的数据集合。它通常具有以下几个核心特征,也被称为大数据的“5V”特征:
1. Volume(数据量)
- 规模巨大:大数据的核心特征之一是其数据量庞大,通常以TB(太字节)、PB(拍字节)甚至EB(艾字节)为单位。传统的数据管理工具和数据库难以处理如此规模的数据。
2. Velocity(速度)
- 生成和处理速度快:大数据不仅涉及庞大的数据量,还要求快速的数据生成、传输和处理。实时数据处理需求增加,例如实时流媒体、实时交易数据分析等,都要求能够在毫秒或秒级的时间内处理数据。
3. Variety(多样性)
- 数据类型多样:大数据不仅包括结构化数据(如表格数据),还包括大量的非结构化数据(如文本、图像、视频)和半结构化数据(如JSON、XML)。这些数据格式各异,来源广泛,需要不同的处理和分析技术。
4. Veracity(真实性)
- 数据真实性和准确性:大数据中包含的信息可能来源复杂,存在噪声、错误或不一致性,因此在处理大数据时,数据的质量、可信度和准确性是一个重要的挑战。
5. Value(价值)
- 数据潜在价值巨大:大数据本身并不意味着有价值,真正的价值在于通过对大数据的分析和挖掘,能够发现有意义的模式、趋势和相关性,从而为企业和组织提供决策支持、优化业务流程和创造新的商业机会。
2、大数据技术诞生的背景
大数据技术的诞生背景可以追溯到信息化时代的发展,特别是随着互联网、移动设备、社交媒体、物联网(IoT)等技术的普及,数据生成量呈现爆炸式增长。这种数据的爆炸性增长带来了巨大的挑战和机遇,推动了大数据技术的诞生。
1. 数据量的急剧增长
- 互联网普及:互联网的广泛应用使得全球各地的人们可以生成和访问大量的数据,包括网页、电子邮件、社交媒体内容、视频等。
- 移动设备和物联网:智能手机、传感器、智能家居设备等不断生成数据,从位置数据、传感器数据到使用模式等。这些数据的数量远超传统数据源。
2. 数据类型的多样性
- 非结构化和半结构化数据:除了传统的结构化数据(如数据库中的表格数据),非结构化数据(如文本、图像、视频)和半结构化数据(如XML、JSON)成