#include<iostream>
#include<stdlib.h>
#include <time.h>
using namespace std;
// 定义元素类型
typedef int element;
// 定义二叉树节点结构体
typedef struct btree {
struct btree* lchild; // 左子树指针
struct btree* rchild; // 右子树指针
element data; // 节点存储的数据
}*BTree, btree;
// 初始化二叉树
BTree iniBT(int n) {
BTree T;
int m = 0;
// 生成一个 0 - 9 的随机数
m = rand() % 10;
// 如果节点数小于等于 0 或者随机数为 0,返回空树
if (n <= 0 || m == 0) {
return NULL;
}
// 为新节点分配内存
T = (BTree)malloc(sizeof(btree));
T->data = m;
// 递归创建左子树和右子树
T->lchild = iniBT(n - 1);
T->rchild = iniBT(n - 1);
return T;
}
// 全局变量用于节点计数
int x = 1;
// 访问节点
void visitT(BTree T) {
// 输出节点序号和数据
printf("第%d个节点为:%d\n", x++, T->data);
}
// 先序遍历二叉树
void preBT(BTree T) {
BTree q = T, p = T;
BTree S[100];
int top = -1;
// 当树不为空或者栈不为空时继续遍历
while (p!= NULL || top!= -1) {
// 先访问根节点,再将左子树入栈
while (p!= NULL) {
visitT(p);
S[++top] = p;
p = p->lchild;
}
// 左子树遍历完,从栈中取出节点,访问其右子树
p = S[top--];
p = p->rchild;
}
}
int main() {
BTree T;
// 初始化一个深度为 3 的二叉树
T = iniBT(3);
// 先序遍历并输出二叉树节点
preBT(T);
return 0;
}
这段 C++代码主要实现了二叉树的创建和先序遍历功能。首先定义了二叉树节点结构体,包含数据域以及左右子树指针。iniBT
函数用于创建二叉树,通过传入节点数量参数n
,利用随机数生成来决定是否创建节点,若创建则为节点赋值并递归创建左右子树。visitT
函数用于访问节点并输出其信息。preBT
函数实现了先序遍历,通过栈来辅助遍历,先访问根节点,再依次访问左子树和右子树,在访问过程中使用栈来暂存未处理的右子树节点。在main
函数中,首先创建一个深度为 3 的二叉树,然后调用先序遍历函数输出二叉树的节点信息。整个代码展示了如何利用递归和栈来处理二叉树的创建和遍历操作,有助于深入理解二叉树的数据结构和相关算法。