给你一个整数数组 nums,请编写一个能够返回数组 “中心下标” 的方法。
数组 中心下标 是数组的一个下标,其左侧所有元素相加的和等于右侧所有元素相加的和。
如果数组不存在中心下标,返回 -1 。如果数组有多个中心下标,应该返回最靠近左边的那一个。
注意:中心下标可能出现在数组的两端。
1.暴力法,双重循环
class Solution {
public:
int pivotIndex(vector<int>& nums) {
int n=nums.size();
int j;
int k;
int ans1=0;
int ans2=0;
for(int i=0;i<n;i++)
{
j=i-1;
k=i+1;
while(j>=0||k<n)
{
if(j>=0)
{
ans1+=nums[j];
}
if(k<n)
{
ans2+=nums[k];
}
j--;
k++;
}
if(ans1==ans2)
{
return i;
}
ans1=0;
ans2=0;
}
return -1;
}
};
注意对边界的判断,742个用例通过了741个,超出时间限制,意料之中。
2、怎么改进呢。我们分析一下上面这种算法,对于前n-1个元素的和,在之后的和计算时都重复计算了,我们试试看能不能利用前缀和,计算前n个元素的和。这只需要线性复杂度,然后遍历一次看看前N个和是否等于总数的一般。
class Solution {
public:
int pivotIndex(vector<int>& nums) {
int n=nums.size();
vector<int> sum(n);
sum[0]=nums[0];
int zong=nums[0];
for(int i=1;i<n;i++)
{
sum[i]=sum[i-1]+nums[i];
zong+=nums[i];
}
for(int i=0;i<n;i++)
{
if(i==0)
{
if((zong-nums[0])==0)
{
return 0;
}
}
else if(i==n-1)
{
if((zong-nums[n-1])==0)
{
return n-1;
}
}
else
{
if(sum[i-1]*2==zong-nums[i])
{
return i;
}
}
}
return -1;
}
};
在这里要注意一点,也就是sum[i-1]*2==zong-nums[i],不能表示成sum[i-1]=(zong-nums[i])/2。为啥呢,因为除法是整除,和前面一个int类型比较,会产生丢失。比如-1,-1,-1,-1,-1,-1这个数组,我们会输出2。