NLP--情感词典

1.建立积极情感词典,消极情感词典,程度词词典和否定词词典。

2.调用jieba进行分词。

3.遍历分词后的文本列表。进行计算分值。

4.输出最后的积极情感分值,消极情感分值和情感总分值。

优点:基于词典和规则的模式可以随时添加和删除词语和规则,在情感词覆盖率和准确率高的情况下,情感分类效果比较准确。

缺点:依赖于情感词典的构建,对于新出现的网络词效果不好,需要不断扩充才能满足需要。在跨领域和跨语言效果不是很理想。考虑不到上下文之间的语义关系。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值