1.建立积极情感词典,消极情感词典,程度词词典和否定词词典。
2.调用jieba进行分词。
3.遍历分词后的文本列表。进行计算分值。
4.输出最后的积极情感分值,消极情感分值和情感总分值。
优点:基于词典和规则的模式可以随时添加和删除词语和规则,在情感词覆盖率和准确率高的情况下,情感分类效果比较准确。
缺点:依赖于情感词典的构建,对于新出现的网络词效果不好,需要不断扩充才能满足需要。在跨领域和跨语言效果不是很理想。考虑不到上下文之间的语义关系。
1.建立积极情感词典,消极情感词典,程度词词典和否定词词典。
2.调用jieba进行分词。
3.遍历分词后的文本列表。进行计算分值。
4.输出最后的积极情感分值,消极情感分值和情感总分值。
优点:基于词典和规则的模式可以随时添加和删除词语和规则,在情感词覆盖率和准确率高的情况下,情感分类效果比较准确。
缺点:依赖于情感词典的构建,对于新出现的网络词效果不好,需要不断扩充才能满足需要。在跨领域和跨语言效果不是很理想。考虑不到上下文之间的语义关系。