前言
本篇文章记录了用Multisim仿真软件验证R、L、C元件的阻抗特性。
一、实验目的
1、验证电阻、感抗、容抗与频率的关系,测定R-f, XL-f与XC-f特性曲线。
2、加深理解R、L、C元件端电压与电流间的相位关系。
二、实验内容
1、测量单一参数R、L、C元件的阻抗频率特性。
2、用双踪示波器观察rL串联和rC串联电路在不同频率下阻抗角的变化情况,并作记录。
三、实验仪器与设备
序号 | 名称 |
---|---|
1 | 函数信号发生器 |
2 | 频率计 |
3 | 交流毫伏表 |
4 | 双踪示波器 |
5 | 实验电路元件R、L、C |
四、实验原理
1、单一参数R-f, XL-f与XC-f阻抗频率特性曲线
在正弦交流信号作用下,电阻元件R两端电压与流过的电流有关系式=R。
在信号源频率f较低情况下,略去附加电感及分布电容的影响,电阻元件的阻值与信号源频率无关,其阻抗频率特性R-f如图6.1所示。
如果不计线圈本身的电阻RL,又在低频时略去电容的影响,可将电感元件视为纯电感,有关系式L = jXL,感抗随信号频率而变,阻抗频率特性XL-f如图6.1所示。
在低频时略去附加电感的影响,将电容元件视为纯电容元件,有关系式C=-jXC ,容抗随信号源频率而变,阻抗频率特性XC-f如图6.1所示。
2、单一参数R、L、C阻抗频率特性的测试电路
如图6.2所示。图中R、L、C为被测元件,r为电流取样电阻。改变信号源频率,测量R、L、C元件两端电压UR、UL 、UC,流过被测元件的电流则可由r两端电压除以r得到。
3、示波器测量阻抗角的方法
元件的阻抗角(即相位差φ)随输入信号的频率变化而改变,可用实验方法测得阻抗角的频率特性曲线φ~f 。
用双踪示波器测量阻抗角(相位差)的方法:将欲测量相位差的两个信号分别接到双踪示波器YA和YB 两个输入端。调节示波器有关旋钮,使示波器屏幕上出现两条大小适中、稳定的波形,如图13.3所示,荧光屏上测得两路信号上升处的时间差 ΔT,则φ = (ΔT/T)*360。
五、实验注意事项
1、信号源的接地端与示波器的接地端、交流毫伏表的接地端要连在一起,以防外界干扰而影响测量的准确性。
2、用双踪示波器同时观察双路波形时,应该注意两路信号的共地问题。
六、实验内容与步骤
1、测量单一参数R、L、C元件的阻抗频率特性
实验线路如图6.2所示,通过电缆线将函数信号发生器输出的正弦信号接至电路输入端,作为激励源u,并用交流毫伏表(或者示波器)测量,使激励电压的有效值为U=3V,并在整个实验过程中保持不变。(注意接地端的共地问题!)
改变信号源的输出频率从200HZ逐渐增至5KHZ(用频率计测量),并使开关分别接通R、L、C三个元件,用交流毫伏表分别测量UR、Ur;UL、Ur;UC、Ur,并通过计算得到各个频率点的R、XL、XC之值,记入表6.1中。
2、 用双踪示波器观测图6.4所示rL串联和rC串联电路在不同频率下阻抗角的变化情况,即用双踪示波器观测rL串联电路(rC串联电路)的电压、电流波形相位差,并作记录。
用双踪示波器测量阻抗角(相位差)的方法:将欲测量相位差的两个信号分别接到双踪示波器YA和YB 两个输入端。调节示波器有关旋钮,使示波器屏幕上出现两条大小适中、稳定的波形,如图13.3所示,荧光屏上测得两路信号上升处的时间差 ΔT,则φ = (ΔT/T)*360。
流过rL串联电路(rC串联电路)的电流则可由r两端电压Ur除以r得到,用示波器观察rL串联电路电流波形,可通过观察流过该电流的电阻r上的电压波形来实现。rL串联电路(rC串联电路)两端的电压与输入端的激励电压相等,用双踪示波器观察电压波形可通过观察输入端电压波形来实现。注意两路信号的共地问题。
七、multisim仿真原理图
1、测量电阻的阻抗频率特性
2、测量电感的阻抗频率特性3、测量电容的阻抗频率特性
4、测量rC串联电路阻抗角
5、测量rL串联电路阻抗角
八、实验思考题
1、图6.2中各元件流过的电流如何求得?
各元件流过的电流等于电阻r流过的电流。
2、怎样用双踪示波器观察rL串联和rC串联电路阻抗角的频率特性?
将欲测量相位差的两个信号分别接到双踪示波器YA和YB 两个输入端。调节示波器有关旋钮,使示波器屏幕上出现两条大小适中、稳定的波形,观察相位差即可。
3、根据实验数据,在方格纸上绘制R、L、C三个元件的阻抗频率特性曲线,从中可以得出什么结论?
电阻元件的阻抗与信号源频率无关;电感元件的阻抗随着信号源频率的增大而增大;电容元件的阻抗随着信号源频率的增大而减小。
4、根据实验数据,在方格纸上绘制rL串联、rC串联电路的阻抗角频率特性曲线,总结、归纳出结论。
rL串联电路,流过电感L的电压超前电流90度,rC串联电路,流过电容C的电压滞后电流90度。
注:R、L、C元件阻抗特性的测定Multisim仿真源文件点此获得。