编者按
在本系列文章中,我们对顶刊《Management Science》于8月份发布文章中进行了精选(共9篇),并总结其基本信息,旨在帮助读者快速洞察行业最新动态。
推荐文章1
● 题目:Optimal Mechanism Design with Referral
带推荐的最优机制设计
● 原文链接:https://pubsonline.informs.org/doi/abs/10.1287/mnsc.2023.01540
● 作者:Hao Zhou , Jun Zhang
● 发布时间:2024-08-19
● 摘要:
This paper establishes the optimal selling mechanism when a seller can incentivize an existing buyer to refer his privately known potential buyer to participate. We identify three optimal channels for providing referral incentives. First, if the existing buyer declares that no potential buyer exists, his virtual value is penalized. Second, if the existing buyer refers the potential buyer to the seller, his virtual value is boosted. Third, in some scenarios where this carrots-and-sticks-via-virtual-value approach is insufficient for creating proper referral incentives, the existing buyer is then given a constant referral bonus for referring the potential buyer. We also provide conditions under which the optimal mechanism can be implemented using simple mechanisms. Finally, we demonstrate that the conventional resale mechanism is suboptimal.
本文对于“卖方可以激励现有买家去推荐其私下已知的潜在买家参与”这一情景,探究并建立了此时的最优销售机制。我们确定了提供推荐激励的三种最优途径。首先,如果现有买家声称不存在潜在买家,他的虚拟价值将受到惩罚。其次,如果现有买家将潜在买家推荐给卖方,他的虚拟价值将得到提升。第三,在某些情境下,当通过虚拟价值的奖惩机制不足以创造适当的推荐激励时,现有买家将获得一个固定的推荐奖金以鼓励他推荐潜在买家。我们还提供了可以通过简单机制实现最优机制的条件。最后,我们还证明了传统的转售机制是次优的。
推荐文章2
● 题目:Don’t Fake It If You Can’t Make It: Driver Misconduct in Last-Mile Delivery
如果做不到,就别假装:最后一公里物流中的司机不当行为
● 原文链接:https://pubsonline.informs.org/doi/abs/10.1287/mnsc.2023.01829
● 作者:Srishti Arora , Vivek Choudhary , Pavel Kireyev
● 发布时间:2024-08-20
● 摘要:
In the last two decades, last-mile delivery (LMD) firms have seen immense growth fueled by the success of e-commerce, leading to faster and cheaper deliveries. Operating on thin margins, LMD firms strive for successful first-time deliveries to avoid the financial and reputational costs of reattempts. Delivery agents (DAs) are integral to LMD efficiency, influencing customer experience, delivery success, and productivity. However, most LMD performance enhancement research focuses on process, technology, and incentives, which presume workers will conform to procedures and monitoring tools will function flawlessly. Nevertheless, in practice, DAs deviate from expected behaviors, that is, indulge in misconduct, negatively affecting delivery efficiency, often resulting in returned parcels. One of the major forms of misconduct is entering fake remarks about deliveries, wherein DAs intentionally do not deliver the parcels and provide fake reasons for it. For instance, even without reaching a delivery address, a DA remarks “customer unavailable” and records a delivery failure. In this study, we collaborated with a leading Indian LMD firm and, using instrumental variable regression, found that such misconduct leads to a spillover productivity loss. This effect reduces the next day’s successful deliveries by 1.60% and first-time-right deliveries by 1.86%. We discuss misconduct’s correlation with factors such as task complexity and offer novel insights into how opportunistic circumstances can influence worker behavior.
在过去的二十年里,末端配送(LMD)公司因电子商务的成功而迅速增长,推动了更快、更便宜的配送服务。LMD公司在微薄的利润下运作,努力实现首次配送成功,以减少重试的财务和声誉成本。配送员(DA)是LMD效率的关键,影响客户体验、配送成功率和生产力。然而,大多数LMD性能提升的研究