2024春 神经网络与深度学习课程总结 第二周


一、线性回归与线性分类

1.线性回归

1.1 定义

利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。

1.2 线性回归要素

1.训练集(training set),一般成为x,为流程中的输入数据。
2.输出数据,一般称为y。
3.拟合的函数(或称为假设/模型),一般写做y=h(x)。
4.训练数据的条目数:一条训练数据由一对输入数据和输出数据组成,输入数据维度n。

1.3 学习过程

在这里插入图片描述

1.4 求解方法

假设输出数据与n个因素有关,各因素的系数为θ,令
在这里插入图片描述
则有
在这里插入图片描述
假设给定样本在这里插入图片描述
构造代价(误差/损失)函数
在这里插入图片描述
目标:找到超平面参数θ,使J(θ)最小。
求解:令在这里插入图片描述
即可得到
在这里插入图片描述
该解为解析解,在维数不高的情况下求解速度很快。

1.5 线性回归的从零开始实现

import random
import torch
from d2l import torch as d2l

#生成数据集
def synthetic_data(w, b, num_examples): #@save
#生成y=Xw+b+噪声
	X = torch.normal(0, 1, (num_examples, len(w)))
	y = torch.matmul(X, w) + b
	y += torch.normal(0, 0.01, y.shape)
	return X, y.reshape((-1, 1))

true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)

print('features:', features[0],'\nlabel:', labels[0])

d2l.set_figsize()
d2l.plt.scatter(features[:, (1)].detach().numpy(), labels.detach().numpy(), 1);

#读取数据集
def data_iter(batch_size, features, labels):
	num_examples = len(features)
	indices = list(range(num_examples))
	# 这些样本是随机读取的,没有特定的顺序
	random.shuffle(indices)
	for i in range(0, num_examples, batch_size):
		batch_indices = torch.tensor(
			indices[i: min(i + batch_size, num_examples)])
		yield features[batch_indices], labels[batch_indices]

batch_size = 10
for X, y in data_iter(batch_size, features, labels):
	print(X, '\n', y)
	break

#初始化模型参数
w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)

#定义模型
def linreg(X, w, b): #@save
	"""线性回归模型"""
	return torch.matmul(X, w) + b

#定义损失函数
def squared_loss(y_hat, y): #@save
	"""均方损失"""
	return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2

#定义优化算法
def sgd(params, lr, batch_size): #@save
	"""小批量随机梯度下降"""
	with torch.no_grad():
	for param in params:
		param -= lr * param.grad / batch_size
		param.grad.zero_()

#训练
lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss

for epoch in range(num_epochs):
	for X, y in data_iter(batch_size, features, labels):
		l = loss(net(X, w, b), y) # X和y的小批量损失
		# 因为l形状是(batch_size,1),而不是一个标量。 l中的所有元素被加到一起,
		# 并以此计算关于[w,b]的梯度
		l.sum().backward()
		sgd([w, b], lr, batch_size) # 使用参数的梯度更新参数
	with torch.no_grad():
		train_l = loss(net(features, w, b), labels)
		print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')

print(f'w的估计误差: {true_w - w.reshape(true_w.shape)}')
print(f'b的估计误差: {true_b - b}')

2.线性分类

2.1 定义

线性分类器透过特征的线性组合来做出分类决定,以达到
线性分类的目的。简言之,样本通过直线(或超平面)可分。线性分类器输入:特征向量;输出:哪一类。如果是二分类问题,则为0和1,或者是属于某类的概率,即0-1之间的数。

2.2 概率构造方法

分界直线一边是负值,一边是正值。越属于这类,值越大(正),反
之越小(越负)。考虑代入直线方程的值,进一步因为我们最终需要概率,结果在0-1之间,因此需要对值做一个变换:
在这里插入图片描述
其中在这里插入图片描述
该函数成为Sigmoid函数。

2.3 梯度下降法求解线性分类问题

给定样本在这里插入图片描述
其中y(i)智能取0到1间值。
构造代价/误差函数:
在这里插入图片描述
其中在这里插入图片描述
上述与回归方程一致,只是增加了S函数,因此成为Sofemax回归。目标:找到超平面参数θ,使J(θ)最小。令在这里插入图片描述
此处J为非线性,因此构建迭代序列在这里插入图片描述
得到迭代方程
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
迭代求解即可。

2.4 Softmax回归的从零开始实现

import torch
from IPython import display
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

#初始化模型参数
num_inputs = 784
num_outputs = 10
W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True)

#定义Softmax操作
X = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
X.sum(0, keepdim=True), X.sum(1, keepdim=True)

def softmax(X):
	X_exp = torch.exp(X)
	partition = X_exp.sum(1, keepdim=True)
	return X_exp / partition # 这里应用了广播机制

X = torch.normal(0, 1, (2, 5))
X_prob = softmax(X)
X_prob, X_prob.sum(1)

#定义模型
def net(X):
	return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)

#定义损失函数
y = torch.tensor([0, 2])
y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y_hat[[0, 1], y]

def cross_entropy(y_hat, y):
	return - torch.log(y_hat[range(len(y_hat)), y])
cross_entropy(y_hat, y)

#分类精度
def accuracy(y_hat, y): #@save
"""计算预测正确的数量"""
	if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
	y_hat = y_hat.argmax(axis=1)
	cmp = y_hat.type(y.dtype) == y
	return float(cmp.type(y.dtype).sum())

accuracy(y_hat, y) / len(y)

def evaluate_accuracy(net, data_iter): #@save
"""计算在指定数据集上模型的精度"""
	if isinstance(net, torch.nn.Module):
	net.eval() # 将模型设置为评估模式
	metric = Accumulator(2) # 正确预测数、预测总数
	with torch.no_grad():
		for X, y in data_iter:
			metric.add(accuracy(net(X), y), y.numel())
	return metric[0] / metric[1]

class Accumulator: #@save
"""在n个变量上累加"""
	def __init__(self, n):
		self.data = [0.0] * n
	def add(self, *args):
		self.data = [a + float(b) for a, b in zip(self.data, args)]
	def reset(self):
		self.data = [0.0] * len(self.data)
	def __getitem__(self, idx):
		return self.data[idx]

evaluate_accuracy(net, test_iter)

#训练
def train_epoch_ch3(net, train_iter, loss, updater): #@save
	"""训练模型一个迭代周期(定义见第3章) """
	# 将模型设置为训练模式
	if isinstance(net, torch.nn.Module):
		net.train()
		# 训练损失总和、训练准确度总和、样本数
	metric = Accumulator(3)
	for X, y in train_iter:
	# 计算梯度并更新参数
		y_hat = net(X)
		l = loss(y_hat, y)
		if isinstance(updater, torch.optim.Optimizer):
			# 使用PyTorch内置的优化器和损失函数
			updater.zero_grad()
			l.mean().backward()
			updater.step()
		else:
			# 使用定制的优化器和损失函数
			l.sum().backward()
			updater(X.shape[0])
		metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
	# 返回训练损失和训练精度
	return metric[0] / metric[2], metric[1] / metric[2]

class Animator: #@save
"""在动画中绘制数据"""
	def __init__(self, xlabel=None, ylabel=None,legend=None,
	             xlim=None,ylim=None, xscale='linear', yscale='linear',fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,figsize=(3.5, 2.5)):
		# 增量地绘制多条线
		if legend is None:
			legend = []
		d2l.use_svg_display()
		self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
		if nrows * ncols == 1:
			self.axes = [self.axes, ]
		# 使用lambda函数捕获参数
		self.config_axes = lambda: d2l.set_axes(
		self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
		self.X, self.Y, self.fmts = None, None, fmts
	def add(self, x, y):
		# 向图表中添加多个数据点
		if not hasattr(y, "__len__"):
			y = [y]
		n = len(y)
		if not hasattr(x, "__len__"):
			x = [x] * n
		if not self.X:
			self.X = [[] for _ in range(n)]
		if not self.Y:
			self.Y = [[] for _ in range(n)]
		for i, (a, b) in enumerate(zip(x, y)):
			if a is not None and b is not None:
				self.X[i].append(a)
				self.Y[i].append(b)
		self.axes[0].cla()
		for x, y, fmt in zip(self.X, self.Y, self.fmts):
			self.axes[0].plot(x, y, fmt)
		self.config_axes()
		display.display(self.fig)
		display.clear_output(wait=True)

def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater): #@save
	"""训练模型(定义见第3章) """
	animator = Animator(xlabel='epoch', xlim=[1, num_epochs], 	ylim=[0.3, 0.9],
	legend=['train loss', 'train acc', 'test acc'])
	for epoch in range(num_epochs):
		train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
		test_acc = evaluate_accuracy(net, test_iter)
		animator.add(epoch + 1, train_metrics + (test_acc,))
	train_loss, train_acc = train_metrics
	assert train_loss < 0.5, train_loss
	assert train_acc <= 1 and train_acc > 0.7, train_acc
	assert test_acc <= 1 and test_acc > 0.7, test_acc

lr = 0.1
def updater(batch_size):
	return d2l.sgd([W, b], lr, batch_size)

num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)

#预测
def predict_ch3(net, test_iter, n=6): #@save
	"""预测标签(定义见第3章) """
	for X, y in test_iter:
		break
	trues = d2l.get_fashion_mnist_labels(y)
	preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
	titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
	d2l.show_images(
		X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])
predict_ch3(net, test_iter)```

  • 20
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值