2024春 神经网络与深度学习课程总结 第三周

本文概述了2024春季神经网络与深度学习课程的第三周内容,重点介绍了多层感知机、BP算法的原理和应用,涉及线性不可分问题、模型初始化、训练数据划分、欠拟合与过拟合、权重衰减、暂退等关键概念,以及卷积神经网络的基础概念和BP算法详解。
摘要由CSDN通过智能技术生成

2024春 神经网络与深度学习课程总结 第三周

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


一、多层感知机

1.1 线性不可分问题

无法进行线性分类的问题。
在这里插入图片描述
解决方法:使用多层感知机。

1.2 多层感知机

在输入和输出层间加一或多层隐单元,构成多层感知器(多层
前馈神经网络);
加一层隐节点(单元)为三层网络,可解决异或(XOR)问题
由输入得到两个隐节点、一个输出层节点的输出:
在这里插入图片描述
在这里插入图片描述
可得到
在这里插入图片描述
三层感知器可识别任一凸多边形或无界的凸区域。更多层感知器网络,可识别更为复杂的图形。
多层感知器网络,有如下定理:
定理1:若隐层节点(单元)可任意设置,用三层阈值节点的
网络,可以实现任意的二值逻辑函数。
定理2:若隐层节点(单元)可任意设置,用三层S型非线性特
性节点的网络,可以一致逼近紧集上的连续函数或按 范数逼近紧
集上的平方可积函数。

1.3 多层感知机的从零开始实现

import torch
from torch import nn
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

#初始化模型参数
num_inputs, num_outputs, num_hiddens = 784, 10, 256
W1 = nn.Parameter(torch.randn(num_inputs, num_hiddens, requires_grad=True) * 0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
W2 = nn.Parameter(torch.randn(num_hiddens, num_outputs, requires_grad=True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))
params = [W1, b1, W2, b2]

#激活函数
def relu(X):
	a = torch.zeros_like(X)
	return torch.max(X, a)

#模型
def net(X):
	X = X.reshape((-1, num_inputs))
	H = relu(X@W1 + b1) # 这里“@”代表矩阵乘法
	return (H@W2 + b2)

#损失函数
loss = nn.CrossEntropyLoss(reduction='none'#训练
num_epochs, lr = 10, 0.1
updater = torch.optim.SGD(params, lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)

d2l.predict_ch3(net, test_iter)

二、多层前馈网络及BP算法

2.1 多层前馈网络

多层感知机是一种多层前馈网络, 由多层神经网络构成,每层网络将输出传递给下一层网络。神经元间的权值连接仅出现在相邻层之间,不出现在其他位置。如果每一个神经元都连接到上一层的所有神经元(除输入层外),则成为全连接网络。
在这里插入图片描述
多层前馈网络的反向传播 (BP)学习算法,简称BP算法。
x、y是网络的输入、输出向量,神经元用节点表示,网络由输入层、隐层和输出层节点组成,隐层可一层,也可多层(图中是单隐层),前层至后层节点通过权联接。由于用BP学习算法,所以常称BP神经网络。
BP学习算法由正向传播和反向传播组成:
① 正向传播是输入信号从输入层经隐层,传向输出层,若输出层得到了期望的输出,则学习算法结束;否则,转至反向传播。
② 反向传播是将误差(样本输出与网络输出之差)按原联接通路反向计算,由梯度下降法调整各层节点的权值和阈值,使误差减小。

三、模型训练的常用技巧

3.1 模型初始化

简单的考虑,把所有权值在[-1,1]区间内按均值或高斯分布进行初始化。
Xavier初始化:为了使得网络中信息更好的流动,每一层输出的方差应该尽量相等。因此需要实现下面的均匀分布:
在这里插入图片描述

3.2 训练数据与测试数据

数据包括:训练数据、验证数据、测试数据,通常三者比例为70%,15%,15%或60%,20%,20%,当数据很多时,训练和验证数据可适当减少。
𝐾折交叉验证:
原始训练数据被分成 K 个不重叠的子集。 然后执行 K 次模型训练和验证,每次在 K−1 个子集上进行训练, 并在剩余的一个子集(在该轮中没有用于训练的子集)上进行验证。 最后,通过对 K 次实验的结果取平均来估计训练和验证误差。

3.3 欠拟合与过拟合

欠拟合:误差一直比较大。
过拟合:在训练数据集上误差小而在测试数据集上误差大。
在这里插入图片描述

3.4 权重衰减(L2正则化)

为防止过拟合和权值震荡,加入新的指标函数项:
在这里插入图片描述
第二项约束了权值不能过大。在梯度下降时,导数容易计算:
在这里插入图片描述

3.5 暂退

在整个训练过程的每一次迭代中,标准暂退法包括在计算下一层之前将当前层中的一些节点置零。
在这里插入图片描述

四、卷积神经网络

4.1 基本概念

特征提取:
在这里插入图片描述
填充:
在矩阵的边界上填充一些值,以增加矩阵的大小,通常用0或者复制边界像素来进行填充。
在这里插入图片描述
步长:如图步长为2
在这里插入图片描述
池化:
使用局部统计特征,如均值或最大值。解决特征过多问题。
由多个卷积层和下采样层构成,后面可连接全连接网络。
在这里插入图片描述

4.2 卷积神经网络BP算法

下采样层:
如果当前是卷积层,下一层为下采样层,误差如何从下采样层回传:假设为22核平均池化
在这里插入图片描述
如果当前是下采样层,下一层为卷积层,误差如何从卷积回传:假设为2
2核卷积
在这里插入图片描述
假设卷积核为在这里插入图片描述
在这里插入图片描述
式中五角星表示图像卷积,计算时需首先上下、左右翻转后再做相关。
卷积层+卷积层:
在这里插入图片描述
卷积层+全连接层:
在这里插入图片描述

  • 25
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值