瓷砖铺放(递归)(超简单)

【问题描述】

有一长度为N(1<=N<=10)的地板,给定两种不同瓷砖:一种长度为1,零一种长度为2,数目不限。要将这个长度为N的地板铺满,一共有多少种不同的铺法?

例如:长度为4的地面一共有如下5中铺法:

4=1+1+1+1

4=2+1+1

4=1+2+1

4=1+1+2

4=2+2

编程用递归的方法求解上述问题。

【输入格式】

只有一个数N,代表地板的长度

【输出格式】

输出一个数,代表所有不同的瓷砖铺放方法的总数。

样例输入】

4

【样例输出】

5

【思路】

地板瓷砖的组成,1和2.

设长度为2的瓷砖为个数为n,范围  0~N/2   ,n也是递归的改变参数

则长度为1的瓷砖个数为N-n*2,瓷砖总数为N-n

每次递归的的不同总数就是在N-n个瓷砖中放n个瓷砖的种数(C【n,N-n】)

【代码】

#include<stdio.h>
void digui(int N,int n,int *add){
	int i,up=1,down=1;
	for(i=1;i<=n;i++){
		down*=i; 
		up*=(N-n-i+1);
	}
	*add+=(up/down);
	if(n!=(N/2)){
		digui(N,n+1,add);
	}
}
int main(){
	int N;
	scanf("%d",&N);
	int n=0,add=0;
	digui(N,n,&add);
	printf("%d",add);
	return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

零维展开智子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值