【Opencv】基于色差的简单目标提取

  所有颜色都是由 R R R(红)、 G G G(绿)、 B B B(蓝) 3个单色调配而成, 每种单色都人为地从 0 ~ 255 0~255 0255分成了 256 256 256个级,所以根据 R R R G G G B B B的不同 组合可以表示 256 × 256 × 256 = 16777216 256×256×256=16777216 256×256×256=16777216种颜色,被称为全彩色图像(full-color image)或者真彩色图像(true-color image)。一幅全彩色图像如果不压缩,文件将会很大。例如,一幅 640 × 480 640×480 640×480像素的全彩色图像,一个像素由 3 3 3个字节来表示 R R R G G G B B B各个分量,需要保存 640 × 480 × 3 = 921600 640×480×3=921600 640×480×3=921600(约1MB)字节。
  对于自然界的目标提取,可以根据目标的颜色特征,尽量使用 R R R G G G B B B分量及它们之间的差分组合,这样可以有效避免自然光变化的影响,快速有效地提取目标。
  举例:要从果树上提取桃子的红色区域所在位置,如下面照片所示。
在这里插入图片描述
由于成熟桃子一般带红色,因此对彩色原图像首先利用红、绿色差信息提取图像中桃子的红色区域。对图像中的像素点( x i x_i xi y i y_i yi)( x i x_i xi y i y_i yi分别为像素点 i i i x x x坐标和 y y y坐标, 0 ≤ i < n 0≤i<n 0i<n n n n为图像中像素点的总数),设其红色( R R R)分量和绿色( G G G)分量的像素值分别为 R R R( x i x_i xi y i y_i yi)和 G G G( x i x_i xi y i y_i yi),其差值为 β i β_i βi= R R R( x i x_i xi y i y_i yi) − - G G G( x i x_i xi y i y_i yi),由此获得一个灰度图像( R G RG RG图像), 若 β i > 0 β_i>0 βi>0,设灰度图像上该点的像素值为βi,否则为0(黑色)。之后做出 R G RG RG图像的直方图找出谷点 α α α(作为二值化的阈值)。逐像素扫描 R G RG RG图像,若 β i > α β_i>α βi>α,则将该点像素值设为 255 255 255(白色),否则设为 0 0 0(黑色),获得二值图像。然后再对图像进行形态学处理。
色差图:在这里插入图片描述
直方图:在这里插入图片描述
二值化:在这里插入图片描述
形态学处理:
在这里插入图片描述

import cv2
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread('peach.jpg', 1)
#因为cv2读取的照片类型是BGR类型,所以要转成RGB类型的照片
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
#得到r, g, b通道的照片
r, g, b = cv2.split(img_rgb)
#获得RG灰度图像
c = r - g
#求出色差图的直方图,查看分割的最优阈值
hist, bins = np.histogram(c, bins = 256, range = (0, 256))
plt.plot(hist)
plt.show()
#采用190作为阈值
thresh_value = np.sum(c[np.where(c != 0)]) / np.sum(c != 0)
_, peach = cv2.threshold(c, 190, 255, cv2.THRESH_BINARY_INV)
#进行腐蚀操作,将小白点去除
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
peach = cv2.erode(peach, kernel, iterations = 3)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

八岁爱玩耍

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值