PyTorch——实现自注意力机制(self-attention)

1 原理简述

  Self-Attention Layer 一次检查同一句子中的所有单词的注意力,这使得它成为一个简单的矩阵计算,并且能够在计算单元上并行计算。 此外,Self-Attention Layer 可以使用下面提到的 Multi-Head 架构来拓宽视野,也就是多头注意力机制。Self-Attention Layer 基本结构如下:
在这里插入图片描述

对于每个输入 x \boldsymbol{x} x,首先经过 Embedding 层对每个输入进行编码得到 a 1 , a 2 , a 3 , a 4 \boldsymbol{a_1,a_2,a_3,a_4} a1,a2,a3,a4,后将输入特征经过三个全连接层分别得到 Query,Key,Value

  • q i ( Q u e r y ) = W q a i \boldsymbol{q^i(Query) = W^q a^i} qi(Query)=Wqai
  • k i ( K e y ) = W k a i \boldsymbol{k^i(Key) = W^k a^i} ki(Key)=Wkai
  • v i ( V a l u e ) = W v a i \boldsymbol{v^i(Value) = W^v a^i} vi(Value)=Wvai

W q , W k , W v \boldsymbol{W^q, W^k,W^v} Wq,Wk,Wv 由网络训练而来。注意力矩阵是由 Query 和 Key 计算得到,方式由许多种,如点积、缩放点积等。Value 可以看作是信息提取器,将根据单词的注意力提取一个唯一的值,也即某个特征有多少成分被提取出来。下面计算一种注意力矩阵的方式:缩放点积。
在这里插入图片描述
注意力矩阵 A \boldsymbol{A} A 定义为 Query (giver) 和 Key (receiver) 的内积除以其维度的平方根。 每个单词通过提供 Query 来匹配作为注意力的目标单词的 Key,从而对所有单词产生注意力。为防止注意力分数随维度增大而增大,让注意力矩阵除以向量的维度的开方。 然后对得到的注意力矩阵 A \boldsymbol{A} A 进行 Softmax 归一化得到 A ^ \boldsymbol{\hat{A}} A^,最后将 A ^ \boldsymbol{\hat{A}} A^ 乘以 Value 矩阵并相加得到最终的特征 b \boldsymbol{b} b
在这里插入图片描述

矩阵化如下:
在这里插入图片描述

在上述的 self-attention 中,我们最终只得到一个注意力矩阵,也就是说这个注意力矩阵所关注的信息只偏句子之间的一种关系,但是在时序序列中,往往特征之间不止一种关系,所以我们要提取多个注意力矩阵,这样可以捕获更多的信息,这种注意力机制也就是 多头注意力机制(Multi-Heads)。在实现过程中,我们只需要将原始的 q i , k i , v i \boldsymbol{q^i,k^i,v^i} qi,ki,vi 分裂为 n \boldsymbol{n} n 个就得到 n \boldsymbol{n} n 头自注意力机制了。
在这里插入图片描述

2 PyTorch 实现

定义 num_attention_heads 为注意力机制的头数,input_size 为输入特征维度,hidden_size 为 q i , k i , v i \boldsymbol{q^i,k^i,v^i} qi,ki,vi 的总维度,这样每个头的维度也可以求出,定义为 attention_head_size:

self.num_attention_heads = num_attention_heads
self.attention_head_size = int(hidden_size / num_attention_heads)
self.all_head_size = hidden_size

定义 W q , W k , W v \boldsymbol{W^q, W^k,W^v} Wq,Wk,Wv,通过全连接网络生成:

self.key_layer = nn.Linear(input_size, hidden_size)
self.query_layer = nn.Linear(input_size, hidden_size)
self.value_layer = nn.Linear(input_size, hidden_size)

使用输入特征乘 W q , W k , W v \boldsymbol{W^q, W^k,W^v} Wq,Wk,Wv 得到 Query,Key,Value 矩阵,维度为 ( b a t c h _ s i z e , s e q _ l e n , h i d d e n _ s i z e ) (batch\_size,seq\_len, hidden\_size) (batch_size,seq_len,hidden_size)

key = self.key_layer(x)
query = self.query_layer(x)
value = self.value_layer(x)

求多头注意力机制的 W q , W k , W v \boldsymbol{W^q, W^k,W^v} Wq,Wk,Wv,头数为 num_attention_heads,并要调换维度,即将 s e q _ l e n seq\_len seq_len 维度与 n u m _ a t t e n t i o n _ h e a d s num\_attention\_heads num_attention_heads 维度对换,最终 W q , W k , W v \boldsymbol{W^q, W^k,W^v} Wq,Wk,Wv 维度为 ( b a t c h _ s i z e , n u m _ a t t e n t i o n _ h e a d s , s e q _ l e n , a t t e n t i o n _ h e a d _ s i z e ) (batch\_size,num\_attention\_heads,seq\_len,attention\_head\_size) (batch_size,num_attention_heads,seq_len,attention_head_size)

def trans_to_multiple_heads(self, x):
    new_size = x.size()[ : -1] + (self.num_attention_heads, self.attention_head_size)
    x = x.view(new_size)
    return x.permute(0, 2, 1, 3)
key_heads = self.trans_to_multiple_heads(key)
query_heads = self.trans_to_multiple_heads(query)
value_heads = self.trans_to_multiple_heads(value)

Q \boldsymbol{Q} Q K \boldsymbol{K} K 矩阵做点积运算,并进行缩放,得到注意力矩阵的维度为 ( b a t c h _ s i z e , n u m _ a t t e n t i o n _ h e a d s , s e q _ l e n , s e q _ l e n ) (batch\_size,num\_attention\_heads,seq\_len,seq\_len) (batch_size,num_attention_heads,seq_len,seq_len)

attention_scores = torch.matmul(query_heads, key_heads.permute(0, 1, 3, 2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)

对注意力矩阵进行归一化,归一化的维度为 3,矩阵的维度不发生变化:

attention_probs = F.softmax(attention_scores, dim = -1)

将注意力矩阵乘以矩阵 V \boldsymbol{V} V,得到输出特征,维度为 ( b a t c h _ s i z e , n u m _ a t t e n t i o n _ h e a d s , s e q _ l e n , a t t e n t i o n _ h e a d _ s i z e ) (batch\_size,num\_attention\_heads,seq\_len,attention\_head\_size) (batch_size,num_attention_heads,seq_len,attention_head_size)

context = torch.matmul(attention_probs, value_heads)

将各头的注意力矩阵进行拼接,contiguous() 是将 tensor 的内存变成连续的,否则进行 view 操作时会报错,至于原因可参考:https://blog.csdn.net/kdongyi/article/details/108180250

context = context.permute(0, 2, 1, 3).contiguous()
new_size = context.size()[ : -2] + (self.all_head_size , )
context = context.view(*new_size)

全部代码:

import torch
import numpy as np
import torch.nn as nn
import math
import torch.nn.functional as F

class selfAttention(nn.Module) :
    def __init__(self, num_attention_heads, input_size, hidden_size):
        super(selfAttention, self).__init__()
        if hidden_size % num_attention_heads != 0 :
            raise ValueError(
                "the hidden size %d is not a multiple of the number of attention heads"
                "%d" % (hidden_size, num_attention_heads)
            )

        self.num_attention_heads = num_attention_heads
        self.attention_head_size = int(hidden_size / num_attention_heads)
        self.all_head_size = hidden_size

        self.key_layer = nn.Linear(input_size, hidden_size)
        self.query_layer = nn.Linear(input_size, hidden_size)
        self.value_layer = nn.Linear(input_size, hidden_size)

    def trans_to_multiple_heads(self, x):
        new_size = x.size()[ : -1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(new_size)
        return x.permute(0, 2, 1, 3)

    def forward(self, x):
        key = self.key_layer(x)
        query = self.query_layer(x)
        value = self.value_layer(x)

        key_heads = self.trans_to_multiple_heads(key)
        query_heads = self.trans_to_multiple_heads(query)
        value_heads = self.trans_to_multiple_heads(value)

        attention_scores = torch.matmul(query_heads, key_heads.permute(0, 1, 3, 2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)

        attention_probs = F.softmax(attention_scores, dim = -1)

        context = torch.matmul(attention_probs, value_heads)
        context = context.permute(0, 2, 1, 3).contiguous()
        new_size = context.size()[ : -2] + (self.all_head_size , )
        context = context.view(*new_size)
        return context

测试:

features = torch.rand((32, 20, 10))
attention = selfAttention(2, 10, 20)
result = attention.forward(features)
print(result.shape)

结果:

torch.Size([32, 20, 20])

参考:
https://blog.csdn.net/beilizhang/article/details/115282604

  • 65
    点赞
  • 402
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 36
    评论
注意力机制Self-Attention Mechanism)是一种用于处理序列数据的机制,它可以在不同位置之间建立关联,从而更好地捕捉序列中的长程依赖关系。下面是自注意力机制的代码实现: ```python import torch import torch.nn as nn class SelfAttention(nn.Module): def __init__(self, hidden_size, num_heads): super(SelfAttention, self).__init__() self.hidden_size = hidden_size self.num_heads = num_heads self.head_size = hidden_size // num_heads self.query = nn.Linear(hidden_size, hidden_size) self.key = nn.Linear(hidden_size, hidden_size) self.value = nn.Linear(hidden_size, hidden_size) self.dropout = nn.Dropout(0.1) self.softmax = nn.Softmax(dim=-1) def forward(self, x): batch_size, seq_len, hidden_size = x.size() # 将输入张量 x 沿着最后一个维度分割成 num_heads 个张量 # 每个张量的形状为 [batch_size, seq_len, head_size] query = self.query(x).view(batch_size, seq_len, self.num_heads, self.head_size).transpose(1, 2) key = self.key(x).view(batch_size, seq_len, self.num_heads, self.head_size).transpose(1, 2) value = self.value(x).view(batch_size, seq_len, self.num_heads, self.head_size).transpose(1,2) # 计算注意力分数 scores = torch.matmul(query, key.transpose(-2, -1)) / torch.sqrt(torch.tensor(self.head_size, dtype=torch.float32)) attn_weights = self.softmax(scores) attn_weights = self.dropout(attn_weights) # 计算加权和 attn_output = torch.matmul(attn_weights, value) attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_len, self.hidden_size) return attn_output ``` 上述代码实现了一个 SelfAttention 类,它包含了一个线性变换层(query、key、value)、一个 Dropout 层、一个 Softmax 层以及一个矩阵乘法操作。在 forward 方法中,我们首先将输入张量 x 沿着最后一个维度分割成 num_heads 个张量,然后分别进行线性变换,得到 query、key、value 张量。接着,我们计算注意力分数,通过 Softmax 层得到注意力权重,再通过 Dropout 层进行随机失活。最后,我们将注意力权重与 value 张量相乘并求和,得到最终的注意力输出。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 36
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

八岁爱玩耍

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值