转置卷积(Transposed Convolution)可视化过程

文章介绍了标准卷积和转置卷积的概念,强调转置卷积用于上采样,通过改变Padding和Stride来调整输出尺寸。转置卷积实际上是一种特殊的卷积操作,其计算过程包括对输入特征图的预处理和标准卷积步骤。

1. 介绍

  转置卷积(Transposed Convolution)经常也被称作反卷积,所谓反卷积即为通过标准卷积层生成的输出被反卷积,将得到原始输入。而转置卷积不按值反转标准卷积,而仅按维度。

在这里插入图片描述
转置卷积层和标准卷积层的计算原理完全相同,不同的是输入特征图不同。下面分别介绍标准卷积和转置卷积。转置卷积怎么来的请参考:https://blog.csdn.net/tsyccnh/article/details/87357447,这篇博客只介绍转置卷积的具体实现。

2. 标准卷积

  输入特征图大小为 i × i i\times i i×i 的标准卷积层由以下两个参数定义:

  • Padding (p):对特征图周围进行填充,扩大到 ( i + 2 ∗ p ) × ( i + 2 ∗ p ) (i+2 * p )\times (i+2*p) (i+2p)×(i+2p)
  • Stride (s):卷积核在特征图上移动的步长。

下图展示了一个卷积层是如何分两步进行的:

在这里插入图片描述
在第一步中,输入特征图用零填充,而在第二步中,卷积核通过前面定义的步长在特征图上进行滑动,并于滑动窗口求点积。卷积层有 “Same” 和 “Vaild” 卷积,前者输出的空间维度等于输入的空间维度,后者输出的空间维度小于输入的空间维度,在搭建模型中,一般使用 “Same” 卷积。下面的动画演示了不同 StridePadding 的卷积层。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

八岁爱玩耍

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值