1. 介绍
转置卷积(Transposed Convolution)经常也被称作反卷积,所谓反卷积即为通过标准卷积层生成的输出被反卷积,将得到原始输入。而转置卷积不按值反转标准卷积,而仅按维度。

转置卷积层和标准卷积层的计算原理完全相同,不同的是输入特征图不同。下面分别介绍标准卷积和转置卷积。转置卷积怎么来的请参考:https://blog.csdn.net/tsyccnh/article/details/87357447,这篇博客只介绍转置卷积的具体实现。
2. 标准卷积
输入特征图大小为 i × i i\times i i×i 的标准卷积层由以下两个参数定义:
- Padding (p):对特征图周围进行填充,扩大到 ( i + 2 ∗ p ) × ( i + 2 ∗ p ) (i+2 * p )\times (i+2*p) (i+2∗p)×(i+2∗p);
- Stride (s):卷积核在特征图上移动的步长。
下图展示了一个卷积层是如何分两步进行的:

在第一步中,输入特征图用零填充,而在第二步中,卷积核通过前面定义的步长在特征图上进行滑动,并于滑动窗口求点积。卷积层有 “Same” 和 “Vaild” 卷积,前者输出的空间维度等于输入的空间维度,后者输出的空间维度小于输入的空间维度,在搭建模型中,一般使用 “Same” 卷积。下面的动画演示了不同 Stride 和Padding 的卷积层。

文章介绍了标准卷积和转置卷积的概念,强调转置卷积用于上采样,通过改变Padding和Stride来调整输出尺寸。转置卷积实际上是一种特殊的卷积操作,其计算过程包括对输入特征图的预处理和标准卷积步骤。
最低0.47元/天 解锁文章
236

被折叠的 条评论
为什么被折叠?



