迷宫问题C++广度优先遍历BFS

迷宫问题(BFS算法) 我们在学习了栈的时候了解到了迷宫问题,当时我们利用栈来完成对于迷宫问题的解决,但只能找到一条路径而且也不是最优化的路径。现在学习了图的广度优先遍历BFS算法,我们就可以找到迷宫问题的最短路径。
`在这里插入代码片
#include
using namespace std;
struct que
{
int x, y, s, f;
}node[200];
struct print_way
{
int x, y;
}way[100];
int main()
{
int maze[50][50], visit[50][50];
for (int i = 0; i < 50; i++)
for (int j = 0; j < 50; j++)
visit[i][j] = 0;
int m, n;
int start_x, start_y, end_x, end_y;
int head = 1, tail = 1;
int tx, ty;
bool flag = false;
cin >> m >> n;
for (int y = 0; y < n; y++)
for (int x = 0; x < m; x++)
cin >> maze[y][x];
cin >> start_x >> start_y >> end_x >> end_y;
visit[start_y][start_x] = 1;
node[tail].x = start_x;
node[tail].y = start_y;
node[tail].f = 0;
node[tail].s = 0;
tail++;
while (head < tail)
{
for (int ctrl = 0; ctrl < 4; ctrl++)
{
int sign = 0;
switch (ctrl)
{
case 0:
tx = node[head].x + 1;
ty = node[head].y;
break;
case 1:
tx = node[head].x;
ty = node[head].y + 1;
break;
case 2:
tx = node[head].x - 1;
ty = node[head].y;
break;
case 3:
tx = node[head].x;
ty = node[head].y - 1;
break;
}
if (tx<0 || tx>m - 1 || ty<0 || ty>n - 1)
sign=1;
if (maze[ty][tx] == 0 && visit[ty][tx] == 0&&sign!=1)
{
node[tail].s = node[head].s + 1;
node[tail].x = tx;
node[tail].y = ty;
node[tail].f = head;
visit[ty][tx] = 1;
tail++;
}
if (ty == end_x && ty == end_y&&sign!=1)
{
flag = true;
break;
}
}
if (flag)
break;
head++;
}
cout << "the min step is " << node[tail - 1].s << endl;
int i = 0;
way[i].x = end_x;
way[i].y = end_y;
int temp = node[tail - 1].f;
while (temp != 0)
{
i++;
way[i].x = node[temp].x;
way[i].y = node[temp].y;
maze[node[temp].y][node[temp].x] = 3;
temp = node[temp].f;
}
cout << “the step way” << endl;
for (int j = node[tail - 1].s ; j >= 0; j–)
cout << way[j].x << " " << way[j].y<<endl;
maze[end_y][end_x] = 3;
cout << “print the way” << endl;
for (int y = 0; y < n; y++)
{
for (int x = 0; x < m; x++)
cout << maze[y][x] << " ";
cout << endl;
}
return 0;
}
/*
4 5
0 0 1 0
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
0 0 2 3
*/
大家可以试着自己设置迷宫来测试代码,其实迷宫问题BFS算法总体思路都是一样的,看了其他人的基本上都是换汤不换药

欢迎使用Markdown编辑器

你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。

新的改变

我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:

  1. 全新的界面设计 ,将会带来全新的写作体验;
  2. 在创作中心设置你喜爱的代码高亮样式,Markdown 将代码片显示选择的高亮样式 进行展示;
  3. 增加了 图片拖拽 功能,你可以将本地的图片直接拖拽到编辑区域直接展示;
  4. 全新的 KaTeX数学公式 语法;
  5. 增加了支持甘特图的mermaid语法1 功能;
  6. 增加了 多屏幕编辑 Markdown文章功能;
  7. 增加了 焦点写作模式、预览模式、简洁写作模式、左右区域同步滚轮设置 等功能,功能按钮位于编辑区域与预览区域中间;
  8. 增加了 检查列表 功能。

功能快捷键

撤销:Ctrl/Command + Z
重做:Ctrl/Command + Y
加粗:Ctrl/Command + B
斜体:Ctrl/Command + I
标题:Ctrl/Command + Shift + H
无序列表:Ctrl/Command + Shift + U
有序列表:Ctrl/Command + Shift + O
检查列表:Ctrl/Command + Shift + C
插入代码在这里插入代码片Ctrl/Command + Shift + K
插入链接:Ctrl/Command + Shift + L
插入图片:Ctrl/Command + Shift + G
查找:Ctrl/Command + F
替换:Ctrl/Command + G

合理的创建标题,有助于目录的生成

直接输入1次#,并按下space后,将生成1级标题。
输入2次#,并按下space后,将生成2级标题。
以此类推,我们支持6级标题。有助于使用TOC语法后生成一个完美的目录。

如何改变文本的样式

强调文本 强调文本

加粗文本 加粗文本

标记文本

删除文本

引用文本

H2O is是液体。

210 运算结果是 1024.

插入链接与图片

链接: link.

图片: Alt

带尺寸的图片: Alt

居中的图片: Alt

居中并且带尺寸的图片: Alt

当然,我们为了让用户更加便捷,我们增加了图片拖拽功能。

如何插入一段漂亮的代码片

博客设置页面,选择一款你喜欢的代码片高亮样式,下面展示同样高亮的 代码片.

// An highlighted block
var foo = 'bar';

生成一个适合你的列表

  • 项目
    • 项目
      • 项目
  1. 项目1
  2. 项目2
  3. 项目3
  • 计划任务
  • 完成任务

创建一个表格

一个简单的表格是这么创建的:

项目Value
电脑$1600
手机$12
导管$1

设定内容居中、居左、居右

使用:---------:居中
使用:----------居左
使用----------:居右

第一列第二列第三列
第一列文本居中第二列文本居右第三列文本居左

SmartyPants

SmartyPants将ASCII标点字符转换为“智能”印刷标点HTML实体。例如:

TYPEASCIIHTML
Single backticks'Isn't this fun?'‘Isn’t this fun?’
Quotes"Isn't this fun?"“Isn’t this fun?”
Dashes-- is en-dash, --- is em-dash– is en-dash, — is em-dash

创建一个自定义列表

Markdown
Text-to- HTML conversion tool
Authors
John
Luke

如何创建一个注脚

一个具有注脚的文本。2

注释也是必不可少的

Markdown将文本转换为 HTML

KaTeX数学公式

您可以使用渲染LaTeX数学表达式 KaTeX:

Gamma公式展示 Γ ( n ) = ( n − 1 ) ! ∀ n ∈ N \Gamma(n) = (n-1)!\quad\forall n\in\mathbb N Γ(n)=(n1)!nN 是通过欧拉积分

Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t   . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=0tz1etdt.

你可以找到更多关于的信息 LaTeX 数学表达式here.

新的甘特图功能,丰富你的文章

Mon 06 Mon 13 Mon 20 已完成 进行中 计划一 计划二 现有任务 Adding GANTT diagram functionality to mermaid
  • 关于 甘特图 语法,参考 这儿,

UML 图表

可以使用UML图表进行渲染。 Mermaid. 例如下面产生的一个序列图:

张三 李四 王五 你好!李四, 最近怎么样? 你最近怎么样,王五? 我很好,谢谢! 我很好,谢谢! 李四想了很长时间, 文字太长了 不适合放在一行. 打量着王五... 很好... 王五, 你怎么样? 张三 李四 王五

这将产生一个流程图。:

链接
长方形
圆角长方形
菱形
  • 关于 Mermaid 语法,参考 这儿,

FLowchart流程图

我们依旧会支持flowchart的流程图:

Created with Raphaël 2.2.0 开始 我的操作 确认? 结束 yes no
  • 关于 Flowchart流程图 语法,参考 这儿.

导出与导入

导出

如果你想尝试使用此编辑器, 你可以在此篇文章任意编辑。当你完成了一篇文章的写作, 在上方工具栏找到 文章导出 ,生成一个.md文件或者.html文件进行本地保存。

导入

如果你想加载一篇你写过的.md文件,在上方工具栏可以选择导入功能进行对应扩展名的文件导入,
继续你的创作。


  1. mermaid语法说明 ↩︎

  2. 注脚的解释 ↩︎

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值