矩阵的三角分解

设 A \ A A为n阶对称正定矩阵,则 A \ A A可以分解为一个单位下三角矩阵 L ~ \ \tilde{L}
L
~
和一个上三角矩阵 U ~ \ \tilde{U}
U
~
的乘积:
A = L ~ U ~ \ A=\tilde{L} \tilde{U}
A=
L
~

U
~

令 D = d i a g ( u 11 ~ , ⋯   , u n n ~ ) \ D=diag(\tilde{u_{11}},\cdots, \tilde{u_{nn}}) D=diag(
u
11

~

,⋯,
u
nn

~

),则
U ~ = D U = D 1 2 D 1 2 U \ \tilde{U}=DU=D{\frac{1}{2}}D{\frac{1}{2}}U

U
~
=DU=D
2
1

D
2
1

U

得:
A = ( L ~ D 1 2 ) ( D 1 2 U ) = L U 1 \ A=(\tilde{L}D{\frac{1}{2}})(D{\frac{1}{2}}U)=LU_1
A=(
L
~
D
2
1

)(D
2
1

U)=LU
1

其中 L = L ~ D 1 2 \ L=\tilde{L}D^{\frac{1}{2}} L=
L
~
D
2
1

为非奇异的下三角矩阵, U 1 = D 1 2 U \ U_1=D^{\frac{1}{2}}U U
1

=D
2
1

U为非奇异的上三角矩阵。因为 A = A T \ A=A^T A=A
T
,所以
L U 1 = U 1 T L T \ LU_1=U_1^T L^T
LU
1

=U
1
T

L
T

由于A的分解是唯一的,于是
U 1 = L T \ U_1=L^T
U
1

=L
T


A = L L T ( 1 ) \ A=LL^T \quad (1)
A=LL
T
(1)

以上就是对成正定矩阵的分解定理
————————————————
版权声明:本文为CSDN博主「廣阝」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/SZU_Kwong/article/details/109565029

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值