#AI Agent#
最近不少人聊到AI Agent,算是沟通或项目框架构建中的一个热门词汇,不论什么场景,似乎都愿意引入这个词,那么到底该如何理解AI Agent,个人分析如下,也希望AI Agent能在2025年大放异彩,也祝愿各位2025年顺顺利利,心想事成。
单纯的理解AI Agent,是一种能够感知环境、自主理解、决策和执行动作的智能实体。简单说,似乎就是一种基于大语言模型,能够通过独立思考、调用工具来逐步完成既定目标的计算机程序。
但他们的出现又不的独立存在,少不了LLM和RAG。
为啥呢?因为LLM的知识是提早训练好的内容,存在时效性的问题,加上用于训练的知识一般来源于公域的标准化知识,导致局限性的存在,所以为了解决LLM知识有限的问题,故需要将外部的知识提供给LLM进行学习,让它理解之后能自然的进行表达,而外部知识的出现这时候就需要用到RAG,其通过加入外部数据(如本地知识库、实时数据等)来增强 AI 模型的检索和生成能力,以便提高信息查询和生成质量。可见,无需过多解读RAG,它就是一种技术,作用于LLM,目的是增加输出结果的准确性。
这个时候如果把AI Agent理解为一个智能实体的话,那么LLM则充当着智能体的“大脑”角色。AI Agent 会利用 LLM 的推理能力,把问题进行拆解,形成一个一个的小问题,并定义好这些小问题之间的前后关系,先处理哪个,再处理哪个。然后按照顺序,分别调用 LLM 、 RAG 或者外部工具,来解决每一个小问题,直至解决最初的问题。
本来想画图描述的,算了~~~后面找机会再补了。
当然,如果说LLM充当着智能体的大脑,且并不能完全完成复杂任务的执行。作为智能体,还需要如“神经感官系统”以及“肢体”的参与,这时候引入AI Agent的基础架构,这个内容即通俗的规划、记忆、工具、行动,这些都比较通俗,不做过多的重复描述了。
对于规划而言,我理解即可通过Prompt,为智能体赋予对应的思维模式,引导LLM对复杂的任务进行拆解,和进一步的思考和解决,从而使输出的结果更加准确。而记忆无非就是大脑存储、保留和回忆信息的存储能力。工具可以理解为感知调用和执行能力,可以是软件系统不同应用模块的API,也可以是外部的插件工具。最终,智能体基于规划和记忆来执行具体的行动,通过与外部世界互动,或者通过工具的调用来完成,具体来说无非就是一个Input和Output。
随着AI Agent自主性的进一步加强,将会逐渐替代越来越多的重复性工作。但从To B软件的角度来看,AI最终解决的核心问题仍然不变--降本增效。而对多数产品经理而言,在提升自己对AI理解能力的同时,还要持续提高自己对于产品所在行业的业务理解能力,毕竟在没有找到核心场景前,就算配套再先进的工具也带来不了任何价值。