大数据实战项目推荐-基于Hadoop的房地产项目成本分析系统

💖💖作者:IT跃迁谷毕设展
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
Java实战项目集
微信小程序实战项目集
Python实战项目集
安卓Android实战项目集
大数据实战项目集

💕💕文末获取源码

基于Hadoop的房地产项目成本分析系统-选题背景

在大数据时代,房地产项目的管理与分析变得愈发复杂而重要。房地产项目的成本分析是确保项目成功实施的关键因素之一。随着房地产行业的快速发展,项目规模和复杂性也在不断增加,这使得传统方法难以胜任。因此,本课题的必要性在于探讨如何充分利用大数据技术,建立一套房地产项目成本分析系统,以满足这一迫切需求。
然而,目前已有的解决方案存在一系列问题。传统的成本分析方法往往不足以处理大规模房地产项目的数据,导致分析结果不准确,项目风险难以评估。这些问题加大了项目的不确定性,还可能导致资源浪费和项目失败。因此,本课题的重要性进一步凸显。
本课题的目的是建立一个基于大数据的房地产项目成本分析系统,该系统能够进行分析项目的成本,并帮助决策者更好地了解项目的风险和潜在机会。通过此系统,期望帮助提高房地产项目的成功率,减少不必要的资源浪费,以及为相关人员提供决策支持。本课题的意义不仅在于满足房地产项目管理的迫切需求,还在于推动了大数据技术在房地产领域的应用。

基于Hadoop的房地产项目成本分析系统-技术选型

大数据技术:Hadoop、Spark、Hive
开发技术:Python、Django框架、Vue、Echarts、机器学习
软件工具:Pycharm、DataGrip、Anaconda、VM虚拟机

基于Hadoop的房地产项目成本分析系统-图片展示

基于Hadoop的房地产项目成本分析系统-全图
基于Hadoop的房地产项目成本分析系统-筛选图
基于Hadoop的房地产项目成本分析系统-点图
基于Hadoop的房地产项目成本分析系统-第二筛选图

基于Hadoop的房地产项目成本分析系统-代码展示

//部分代码展示
def parse_project(self, response):
  meta = response.meta
  bs_obj = BeautifulSoup(response.text, "html5lib")
  meta[self.PROJECT] = bs_obj.find("span", id="ProjectName").get_text()
  meta[self.PROJECT_ADDR] = bs_obj.find("span", id="ProjectAddress").get_text()
  meta[self.PROPERTY_COMPANY] = bs_obj.find("span", id="EstateManageCompany").get_text()
  meta[self.PLOT_RATIO] = bs_obj.find("span", id="CubageRate").get_text()
  meta[self.GREEN_RATIO] = bs_obj.find("span", id="GreenRate").get_text()
  meta[self.DECORATE_TYPE] = bs_obj.find("span", id="DeliveStandard").get_text()
​
  self.logger.info("项目名称:%s, 项目地址:%s, 物业公司:%s,容积率:%s, 绿化率: %s, 装修类型: %s" %
           (meta[self.PROJECT], meta[self.PROJECT_ADDR], meta[self.PROPERTY_COMPANY],
            meta[self.PLOT_RATIO], meta[self.GREEN_RATIO],
            meta[self.DECORATE_TYPE]))
  yield Request(meta[self.PROJECT_PRESELL_URL], callback=self.parse_project_presell, meta=meta, dont_filter=True)
  passdef parse_project_presell(self, response):
  """
  PRESALE_PERMIT = "presale_permit"  # :"预售证号码",
  DEVELOPER = "developer"  # :"开发商名称",
  OPEN_TIME = "open_time"  # : "开盘时间",
  BUILD_NO = "build_no"  # :"本期住宅楼号/幢号",
  BUILDING_RESIDENCE_NUM = "building_residence_num"  # :"本幢楼住宅套数",
  PROPERTY_TYPE = "property_type"  # :"物业类型/房屋类型",
  :param response:
  :return:
  """
  meta = response.meta
  bs_obj = BeautifulSoup(response.text, "html5lib")
  meta[self.PRESALE_PERMIT] = bs_obj.find("span", id="证书编号").get_text()
  meta[self.DEVELOPER] = bs_obj.find("span", id="预售单位").get_text()
  meta[self.OPEN_TIME] = bs_obj.find("span", id="开盘日期").get_text()
  meta[self.BUILD_NO] = bs_obj.find("span", id="txtDong").get_text()
  meta[self.BUILDING_RESIDENCE_NUM] = bs_obj.find("span", id="预售套数").get_text()
  meta[self.PROPERTY_TYPE] = bs_obj.find("span", id="性质").get_text()
​
  self.logger.info("项目名称:%s,预售证号码:%s ,开发商名称:%s,开盘时间:%s ,本期住宅楼号/幢号:%s,"
           "本幢楼住宅套数:%s, 物业类型/房屋类型:%s " %
           (meta[self.PROJECT], meta[self.PRESALE_PERMIT], meta[self.DEVELOPER], meta[self.OPEN_TIME],
            meta[self.BUILD_NO], meta[self.BUILDING_RESIDENCE_NUM], meta[self.PROPERTY_TYPE]))
  if meta[self.PROJECT] in meta[self.PROJECT_TO_URL].keys():
    project_show_url = meta[self.PROJECT_TO_URL][meta[self.PROJECT]]
    yield Request(project_show_url, callback=self.parse_project_show_url, meta=meta, dont_filter=True)
  else:
    self.logger.error("当前楼盘在页面中不存在,楼盘名称为:%s" % meta[self.PROJECT])passdef parse_project_show_url(self, response):
  meta = response.meta
  bs_obj = BeautifulSoup(response.text, "html5lib")
  project_floor_url_info = dict()
  project_sum_info_url = urljoin(response.url, bs_obj.find("td", id="ctl00_ContentPlaceHolder1_tdProjectSum").a.
                   attrs["href"])
  for project_building_tag in bs_obj.find("table", attrs={"border": 0, "style": True}).find_all("tr")[1:]:
    key = _REPLACE_NBSP(project_building_tag.find_all("td")[2].get_text())
    value = urljoin(response.url, project_building_tag.find_all("td")[2].a.attrs["href"])
    self.logger.info("栋号:%s,楼盘信息连接:%s" % (key, value))
    project_floor_url_info[key] = value
  meta[self.PROJECT_FLOOR_INFO_URL] = project_floor_url_info
  yield Request(project_sum_info_url, callback=self.parse_project_sum_info_url, meta=meta, dont_filter=True)
  passdef parse_project_sum_info_url(self, response):
  """
  BUILDING_NO = "building_no"  # :"楼号/幢号",
  RESIDENCE_SET = "residence_set"  # :"本期住宅总套数",
  RESIDENCE_AREA = "residence_area"  # :"本期住宅总面积",
  UNSOLD_RESIDENCE_SET = "unsold_residence_set"  # :"本期未售住宅总套数",
  UNSOLD_RESIDENCE_AREA = "unsold_residence_area"  # :"本期未售住宅总面积",
  SOLD_RESIDENCE_SET= "sold_residence_set  # :"本期已售住宅总套数",
  SOLD_RESIDENCE_AREA = "sold_residence_area"  # :"本期已售住宅总面积",
  :param response:
  :return:
  """
  meta = response.meta
  bs_obj = BeautifulSoup(response.text, "html5lib")
  for row in bs_obj.find_all("tr", attrs={"align": None, "style": True}):
    columns = [_REPLACE_NBSP(item.get_text()) for item in row.find_all("td")]
    meta[self.BUILDING_NO] = columns[0]
    meta[self.RESIDENCE_SET] = columns[1]
    meta[self.RESIDENCE_AREA] = columns[2]
    meta[self.UNSOLD_COMMERCIAL_SET] = columns[3]
    meta[self.UNSOLD_COMMERCIAL_AREA] = columns[4]
    meta[self.SOLD_COMMERCIAL_SET] = float(columns[11]) + float(columns[13]) + float(columns[15]) + float(
      columns[17])
    meta[self.UNSOLD_COMMERCIAL_AREA] = \
      float(columns[12]) + float(columns[14]) + float(columns[16]) + float(columns[18])
    self.logger.info("项目名称:%s,楼号/幢号:%s,本期住宅总套数%s,本期住宅总面积:%s,本期未售住宅总套数:%s"
             "本期未售住宅总面积:%s,本期已售住宅总套数:%s,本期已售住宅总面积:%s" %
             (meta[self.PROJECT], meta[self.BUILDING_NO], meta[self.RESIDENCE_SET],
              meta[self.RESIDENCE_AREA], meta[self.UNSOLD_COMMERCIAL_SET],
              meta[self.UNSOLD_COMMERCIAL_AREA], meta[self.SOLD_COMMERCIAL_SET],
              meta[self.UNSOLD_COMMERCIAL_AREA]))
    if meta[self.BUILDING_NO] in meta[self.PROJECT_FLOOR_INFO_URL].keys():
      project_floor_info_url = meta[self.PROJECT_FLOOR_INFO_URL][meta[self.BUILDING_NO]]
      yield Request(project_floor_info_url, callback=self.parse_project_floor_info_url, meta=meta,
              dont_filter=True)
    else:
      self.logger.error("当前栋号不存在,栋号为:%s" % (meta[self.BUILDING_NO]))
  pass

基于Hadoop的房地产项目成本分析系统-文档展示

基于Hadoop的房地产项目成本分析系统-文档展示

基于Hadoop的房地产项目成本分析系统-结语

💕💕
Java实战项目集
微信小程序实战项目集
Python实战项目集
安卓Android实战项目集
大数据实战项目集
💟💟如果大家有任何疑虑,欢迎在下方位置详细交流。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT跃迁谷毕设展

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值