基于大数据的旅游游客人群画像分析与预测-2023-2024届计算机毕业设计选题推荐

本文探讨了在大数据时代下,如何利用Hadoop、Spark等技术进行旅游游客人群画像分析与预测,通过Python代码实例展示了数据抓取、处理和分析过程,以及如何构建预测模型以优化旅游市场策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💖💖作者:IT跃迁谷毕设展
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
Java实战项目集
微信小程序实战项目集
Python实战项目集
安卓Android实战项目集
大数据实战项目集

💕💕文末获取源码

基于大数据的旅游游客人群画像分析与预测-选题背景

在大数据时代,旅游业已成为全球经济中不可忽视的一部分。随着信息技术的不断发展,旅游数据的积累和应用愈发成熟。本课题的研究背景源于对旅游业发展中的新挑战的关注,旨在通过大数据分析实现对旅游游客画像的深度挖掘与预测。随着旅游活动的不断增加,游客画像分析成为了了解他们行为、需求和偏好的关键手段。这一研究是必要的,以便更好地引导旅游业发展,提高服务质量,实现可持续发展目标。
目前现有的解决方案在应对日益复杂的旅游市场中仍然存在一系列问题。传统的统计方法往往难以处理大规模、多维度的旅游数据,导致对游客画像的分析和预测效果有限。因此,本课题的研究目的在于通过运用先进的大数据技术,构建更为精准、全面的旅游游客画像分析与预测模型,以提高对旅游市场的洞察力和应变能力。
这一研究的意义不仅在于为旅游从业者提供更准确的市场信息和决策支持,还能够促进旅游产业与大数据技术的深度融合,推动整个行业的创新发展。通过深入研究旅游游客画像,可以更好地满足游客的需求,提升他们的旅游体验,同时也有助于实现旅游业的可持续发展。

基于大数据的旅游游客人群画像分析与预测-技术选型

大数据技术:Hadoop、Spark、Hive
开发技术:Python、Django框架、Vue、Echarts、机器学习
软件工具:Pycharm、DataGrip、Anaconda、VM虚拟机

基于大数据的旅游游客人群画像分析与预测-图片展示

大屏分析

大屏

散点图分析

散点图

人数售价柱状图分析

人数售价柱状图

人群教育程度统计图分析

人群教育程度统计图

游客类型统计图分析

游客类型统计图

支付分析统计图分析

支付分析统计图

游客身份统计图分析

游客身份统计图

基于大数据的旅游游客人群画像分析与预测-代码展示

Python代码展示

//示例代码展示
import requests
from bs4 import BeautifulSoup
import csv
​
# 定义要爬取的URL
url = "https://www.tripadvisor.com/Hotel_Review-g60763-Reviews-Hotel_1-San_Francisco_Californi.html"# 发送请求并获取页面内容
response = requests.get(url)
content = response.content
​
# 使用BeautifulSoup解析页面内容
soup = BeautifulSoup(content, "html.parser")# 定义一个列表来存储提取到的数据
data = []# 查找页面中的所有评论
reviews = soup.find_all("div", class_="partial_entry")# 遍历所有评论
for review in reviews:
    # 提取评论者姓名
    author = review.find("div", class_="reviewer").text.strip()# 提取评论日期
    date = review.find("span", class_="date").text.strip()# 提取评分
    rating = review.find("span", class_="rating").text.strip()# 提取评论内容
    content = review.find("div", class_="partial_entry").text.strip()# 将提取到的数据添加到列表中
    data.append({"author": author, "date": date, "rating": rating, "content": content})# 将数据保存到CSV文件中
with open("hotel_reviews.csv", "w", newline="", encoding="utf-8") as csvfile:
    writer = csv.writer(csvfile)
    writer.writerow(["Author", "Date", "Rating", "Content"])
    for row in data:
        writer.writerow(row.values())print("爬取完成,数据已保存到hotel_reviews.csv文件中。")

基于大数据的旅游游客人群画像分析与预测-文档展示

基于大数据的旅游游客人群画像分析与预测报告文档展示

基于大数据的旅游游客人群画像分析与预测-文档展示

基于大数据的旅游游客人群画像分析与预测-结语

💕💕
Java实战项目集
微信小程序实战项目集
Python实战项目集
安卓Android实战项目集
大数据实战项目集
💟💟如果大家有任何疑虑,欢迎在下方位置详细交流。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT跃迁谷毕设展

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值