基于大数据的企业人力资源招聘数据分析-Hadoop、Spark、Hive大数据毕设选题推荐

本文探讨了如何利用大数据分析改善企业人力资源招聘流程,以提高效率和准确性。涉及技术选型如Hadoop、Spark等,以及Python等编程语言的应用。通过实例展示了招聘数据分析的各个环节,旨在为企业提供智能招聘策略和工具优化.
摘要由CSDN通过智能技术生成

💖💖作者:IT跃迁谷毕设展
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
Java实战项目集
微信小程序实战项目集
Python实战项目集
安卓Android实战项目集
大数据实战项目集

💕💕文末获取源码

基于大数据的企业人力资源招聘数据分析-选题背景

在当今竞争激烈的商业环境中,企业人力资源招聘的重要性愈发凸显。随着科技的不断进步和数字化转型的推动,企业纷纷采用大数据分析来改善招聘流程,以更好地满足市场需求。这一趋势的背后是对高效、智能招聘方法的需求,以确保企业能够吸引、留住并培养最优秀的人才。因此,本课题的产生具有迫切的背景,因为它探究了如何运用大数据分析来提升企业人力资源招聘的效益,从而满足现代企业的需求。
尽管企业对大数据在招聘中的潜力充满期待,但目前的解决方案存在一系列问题。现有方法可能在数据收集、分析和应用方面存在不足,导致了招聘流程中的效率低下和招聘决策的不准确性。此外,缺乏综合性的数据分析方法和工具,以帮助企业更好地理解招聘数据的含义和趋势。这些问题突显了研究基于大数据的招聘数据分析的重要性,以解决这些挑战并提高招聘流程的效能。
本课题的意义在于,它有望为企业带来更明确、智能的招聘策略,从而实现更高的人才吸引力和更好的竞争力。通过有效利用大数据分析,企业可以更好地理解候选人的需求和市场趋势,有针对性地制定招聘计划,减少错误决策的风险,并提高人才招聘的成功率。此外,这项研究还将为招聘专业人员提供有力的工具,以更好地支持他们的决策制定和招聘战略的优化,从而使企业在人才市场中取得领先地位。

基于大数据的企业人力资源招聘数据分析-技术选型

大数据技术:Hadoop、Spark、Hive
开发技术:Python、Django框架、Vue、Echarts、机器学习
软件工具:Pycharm、DataGrip、Anaconda、VM虚拟机

基于大数据的企业人力资源招聘数据分析-图片展示

基于大数据的企业人力资源招聘数据分析-大屏

基于大数据的企业人力资源招聘数据分析-大屏

基于大数据的企业人力资源招聘数据分析-地图

基于大数据的企业人力资源招聘数据分析-地图

基于大数据的企业人力资源招聘数据分析-招聘完成度统计

基于大数据的企业人力资源招聘数据分析-招聘完成度统计

基于大数据的企业人力资源招聘数据分析-招聘分类统计

基于大数据的企业人力资源招聘数据分析-招聘分类统计

基于大数据的企业人力资源招聘数据分析-招聘人数统计

基于大数据的企业人力资源招聘数据分析-招聘人数统计

基于大数据的企业人力资源招聘数据分析-工作年龄统计

基于大数据的企业人力资源招聘数据分析-工作年龄统计

基于大数据的企业人力资源招聘数据分析-代码展示

import time
from urllib.parse import urlencode
​
from utils.MySelenium import *
from BaseConfigModel import *
from lxml import etree
​
​
class MainSpiderPC:def __init__(self):
        self.driver = get_webdriver()
        self.driver.implicitly_wait(5)def get_one_page_info(self, url):
        print(f'跳转...{url}')
        self.driver.get(url)def parse_html(self, meta_data=None):
        ele = etree.HTML(self.driver.page_source)
        lis = ele.xpath(r'//ul[@class="job-list-box"]/li')for li in lis:
            data_init = {"name": li.xpath(r'.//*[@class="job-name"]//text()'),
                         "area": li.xpath(r'.//*[@class="job-area"]//text()'),
                         "salary": li.xpath(r'.//*[@class="salary"]//text()'), "tags": [], "company_tags": [],
                         "info_desc": [], "url": li.xpath(r'.//a[@class="job-card-left"]/@href')}
            for key, value in data_init.items():
                if value:
                    data_init[key] = value[0]
​
            tags = li.xpath(r'.//*[@class="tag-list"]/li')
            if tags:
                for tag in tags:
                    tag = tag.xpath(r'./text()')
                    if tag:
                        tag_text = tag[0].strip()
                        data_init["tags"].append(tag_text)
            company_tags = li.xpath(r'.//*[@class="company-tag-list"]/li')if company_tags:
                for company_tag in company_tags:
                    company_tag = company_tag.xpath(r'./text()')
                    if company_tag:
                        company_tag_text = company_tag[0].strip()
                        data_init["company_tags"].append(company_tag_text)
            info_desc = li.xpath('.//div[@class="info-desc"]/text()')
            if info_desc:
                data_init["info_desc"] = info_desc[0]
            for key, value in data_init.items():
                if not value:
                    data_init[key] = None
                elif isinstance(value, list):
                    data_init[key] = '|'.join(value)
​
            JobInfo(
                **data_init
            ).save()def next_page(self):
        old_url = self.driver.current_url
        self.driver.find_element(By.CSS_SELECTOR, 'i.ui-icon-arrow-right').click()
        time.sleep(1)
        if self.driver.current_url == old_url:
            return False
        else:
            return True
​
​
def gen_url():
    x = City.objects.get(name='郑州')
    city = x.code
    position = PositionLevel1.objects.get(name='互联网/AI')
    position_2s = PositionLevel3.objects.filter(top_code=position)
    experience = ExperienceModel.objects.all()
    degree = DegreeModel.objects.all()
    citys = [101010100, 101020100, 101280100, 101280600, 101210100, 101030100, 101110100, 101190400, 101200100,
             101230200, 101250100, 101270100, 101180100, 101040100]
    for city in citys:
        yield {
            "city": city,
            "query": 'python',
        }
​
​
if __name__ == '__main__':
    spider = MainSpider()
    x = 0
    for par in gen_url():
        x += 1
        print(f'当前进行第{x}次爬取!')
        if not par:
            continue
        error = 0
        while True:
            try:
                url = 'https://www.zhipin.com/web/geek/job?' + urlencode(par)
                spider.get_one_page_info(url)
                time.sleep(5)
                while True:
                    spider.parse_html(meta_data=par)
                    can_next = spider.next_page()
                    if can_next:
                        time.sleep(5)
                        pass
                    else:
                        print('不能下一页')
                        time.sleep(5)
                        break
            except Exception as e:
                print('错误:{e}')
                time.sleep(60)
                error += 1
                if error > 3:
                    break

基于大数据的企业人力资源招聘数据分析-文档展示

基于大数据的企业人力资源招聘数据分析-文档展示

基于大数据的企业人力资源招聘数据分析-结语

💕💕
Java实战项目集
微信小程序实战项目集
Python实战项目集
安卓Android实战项目集
大数据实战项目集
💟💟如果大家有任何疑虑,欢迎在下方位置详细交流。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT跃迁谷毕设展

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值