二、机器学习基础4(代价函数)

代价函数

通过代价函数获得参数,来寻找最优解的目标函数。

常用平方差代价函数:

假设函数

h\left ( x \right )= \theta _{0}x

平方误差代价函数:将实际数值与拟合数值做差。

J\left ( \theta _{0},\theta _{1} \right )= \frac{1}{2m}\sum_{i=1}^{m}\left ( h\left (x^{\left ( i \right )} \right )-y^{\left ( i \right )} \right )^{2}

最优解即为代价函数的最小值。

为什么代价函数要非负?

只要设计的目标函数有下界,基本上都可以,代价函数非负更为方便。

常见代价函数<

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

满满myno

非常感谢对我创作的支持,爱你呦

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值