灰色模型GM与时间无关

很多人会反对这个标题-灰色模型GM与时间无关,但这正是我这次要论述的主题,众所周知,灰色模型是基于时间序列进行叠加处理后求微分方程然后白化处理,若不是时间序列,微分方程的处理就不合适了,你若深入了解就知道,它其实是基于分析对象与时间构成的二维散点图进行回归分析的一个方法,而GM(1,1)并非真正意义上的一维灰色模型,其实在灰色理论上它是一维,但在处理手法上,它是二维,就因为它潜在了时间这个维度。如果我们忽略了时间这个维度,灰色模型是不适合的,而且灰色模型默认了需要数据在等频率时间上的表现。
但是今天,我要推翻这个观点,我认为灰色模型与时间无关!它的分析对象不需要是时间序列的数据。首先,我引用爱因斯坦的一个观点:时间其实是我们的错觉。所以我们对于10年前的那个时间,可以看作昨天,我们对过去的事情怎样看待,它就是怎样。如此一来,我们可以把10年看成一天,把一个月看成一年,这个长短我们可以转变看待,我们甚至可忽略这个时间的长短。那么忽略了时间我们怎样获取一系列的数据用在灰色模型上呢?随便在不同的时间里拿数据可以吗?表明上看是不可以,因为之前我提到了,它的求解实际上是基于分析对象和时间构成的二维空间进行。但我认为可以,只要你把时间这个维度不按时间来划分即可,例如我们可以把时间这个维度换成身高,即数据序列按身高排序,又或者换成体重,基于灰色模型的处理方法,必然可用,不同的是预测出来的结果就不是未来的结果,而是基于身高更高或体重更重的结果。
进一步,我们若要预测未来的情况,可否依然忽略时间呢?回想爱因斯坦的观点,时间是错觉,那么其实是可以的,我们可以忽略时间间隔来做数据,当然按时间次序做还是暂时要的,做出来的数据会不会不适合灰色模型的运算方法呢?那就要看你以什么做数据了,我们可以以每次出现数据差异的情况下记录数据为标准做数据,这样灰色模型预测出来的下一个数据就相当于告诉你,在下一次数据有差异时的情况,而不是预测下一个某个时间的情况。这种记录数据的方法大大节省了我们抓取数据的工作,就算遗漏了某些变化情况没有抓取,这也只会影响灰色模型的精确率,不会影响大局。
基于上述讨论,我认为灰色模型GM其实不只是针对时间序列,它其实是针对一系列有标准依赖的数据,这个标准依赖不一定是时间,可以是其它因素。所以我认为,灰色模型和时间无关。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值