资源限制
内存限制:512.0MB C/C++时间限制:1.0s Java时间限制:3.0s Python时间限制:5.0s
问题描述
求出区间[a,b]中所有整数的质因数分解。
输入格式
输入两个整数a,b。
输出格式
每行输出一个数的分解,形如k=a1*a2*a3...(a1<=a2<=a3...,k也是从小到大的)(具体可看样例)
样例输入
3 10
样例输出
3=3
4=2*2
5=5
6=2*3
7=7
8=2*2*2
9=3*3
10=2*5
提示
先筛出所有素数,然后再分解。
数据规模和约定
2<=a<=b<=10000
提交代码:
#include <iostream>
#include <cmath>
using namespace std;
/*
Pollard Rho快速因数分解
(1)如果这个质数恰等于n,则说明分解质因数的过程已经结束,打印出即可。
(2)如果n>j,但n能被j整除,则应打印出j的值,并用n除以j的商,作为新的正整数n,重复执行第一步。
(3)如果n不能被j整除,则用j+1作为j的值,重复执行第一步。
*/
int main() {
int a, b;
scanf("%d%d", &a, &b); //输入两个整数a,b
for (int i = a; i <= b; i++) {
int n = i;
printf("%d=", n); //打印当前待分解的数
if (n == 1) {
printf("%d", 1); //若该数为1,则直接输出1
}
for (int j = 2; j * j <= n; j++) { //分解该数
while (n % j == 0) {
n = n / j; //如果n可以被j整除,打印j的值,将n/j作为新的n,继续执行
printf("%d", j);
if (n != 1) { //如果被除数不是1,还可以继续分解,打印乘号
printf("*");
}
}
}
if (n != 1) { //避免重复打印出数字1
printf("%d", n);
}
printf("\n");
}
return 0;
}
运行测试