图像灰度化

灰度图像是指在黑白图像中,每个像素的颜色值表示了该像素的亮度或灰度级别,其取值范围通常为0到255,其中0代表黑色,255代表白色。

在灰度图像中,每个像素的RGB三个分量相等,因此没有彩色信息,只有亮度信息。对于二值灰度图像来说,像素值只能是0或1,灰度级别为2。而对于256级灰度的图像,像素的RGB分量相同,如RGB(100,100,100)代表灰度级别为100,RGB(50,50,50)代表灰度级别为50。

在处理图像时,我们可以单独对RGB三个分量进行处理,但实际上RGB并不能完全反映图像的形态特征,它只是从光学原理上进行颜色的调配。因此,在某些情况下,我们可能会将彩色图像转换为灰度图像,以突出亮度信息并更便于进行图像处理。

将彩色转为灰度的几种方法:

  1. 分量法

 将彩色图像中的三分量的亮度作为三个灰度图像的灰度值,可根据应用需要选取一种灰度图像。

  private async void ToolStripMenuItem_ClickAsync(object sender, EventArgs e)
  {
      // 读取原始图像
      Bitmap originalImage = new Bitmap(imgpath);

      // 创建一个新的灰度图像
      Bitmap grayImage1 = new Bitmap(originalImage.Width, originalImage.Height);
      Bitmap grayImage2 = new Bitmap(originalImage.Width, originalImage.Height);
      Bitmap grayImage3 = new Bitmap(originalImage.Width, originalImage.Height);

      // 提取R、G、B三色分量
      double[,] imR = new double[originalImage.Width, originalImage.Height];
      double[,] imG = new double[originalImage.Width, originalImage.Height];
      double[,] imB = new double[originalImage.Width, originalImage.Height];


      for (int y = 0; y < originalImage.Height; y++)
      {
          for (int x = 0; x < originalImage.Width; x++)
          {
              Color pixelColor = originalImage.GetPixel(x, y);
              imR[x, y] = (double)pixelColor.R / 255.0;
              imG[x, y] = (double)pixelColor.G / 255.0;
              imB[x, y] = (double)pixelColor.B / 255.0;
          }
      }

      // 同时计算三个通道的灰度图像
      Task task1 = Task.Run(() =>
      {
          CalculateGrayImage(imR, grayImage1);
      });

      Task task2 = Task.Run(() =>
      {
          CalculateGrayImage(imG, grayImage2);
      });

      Task task3 = Task.Run(() =>
      {
          CalculateGrayImage(imB, grayImage3);
      });

      // 等待所有任务完成
      await Task.WhenAll(task1, task2, task3);
      
  }
  private void CalculateGrayImage(double[,] channelData, Bitmap grayImage)
  {
      for (int y = 0; y < grayImage.Height; y++)
      {
          for (int x = 0; x < grayImage.Width; x++)
          {
              int grayValue = (int)(channelData[x, y] * 255.0);
              Color grayColor = Color.FromArgb(grayValue, grayValue, grayValue);
              grayImage.SetPixel(x, y, grayColor);
          }
      }
  }

2.最大值法

将彩色图像中的三分量亮度的最大值作为灰度图的灰度值。

 private void ToolStripMenuItem_Click(object sender, EventArgs e)
 {
     // 读取原始图像
     Bitmap originalImage = new Bitmap(imgpath);

     // 创建一个新的灰度图像
     Bitmap grayImage = new Bitmap(originalImage.Width, originalImage.Height);
     for (int y = 0; y < originalImage.Height; y++)
     {
         for (int x = 0; x < originalImage.Width; x++)
         {
             Color color = originalImage.GetPixel(x, y);
             int MaxColor = Math.Max(color.R, color.G);
             MaxColor = Math.Max(color.B, MaxColor);
             Color grayColor = Color.FromArgb(MaxColor, MaxColor, MaxColor);
             grayImage.SetPixel(x, y, grayColor);
         }
     }
     ShowImages(originalImage, grayImage);
 }

3.平均值法

将彩色图像中的三分量亮度求平均得到一个灰度值。

  private void ToolStripMenuItem_Click(object sender, EventArgs e)
  {
      // 读取原始图像
      Bitmap originalImage = new Bitmap(imgpath);

      // 创建一个新的灰度图像
      Bitmap grayImage = new Bitmap(originalImage.Width, originalImage.Height);
      for (int y = 0; y < originalImage.Height; y++)
      {
          for (int x = 0; x < originalImage.Width; x++)
          {
              Color color = originalImage.GetPixel(x, y);
              int area = (int)(color.R + color.G + color.B) / 3;
              Color grayColor = Color.FromArgb(area, area, area);
              grayImage.SetPixel(x, y, grayColor);
          }
      }
      ShowImages(originalImage, grayImage);

  }

4.加权平均法

根据重要性及其它指标,将三个分量以不同的权值进行加权平均。由于人眼对绿色的敏感最高, 对蓝色敏感最低,因此,按下式对RGB三分量进行加权平均能得到较合理的灰度图像。

这里使用的是人眼感知的权重int grayValue = (int)(pixelColor.R * 0.299 + pixelColor.G * 0.587 + pixelColor.B * 0.114);

  1. Luma (ITU-R BT.709):grayValue = (int)(pixelColor.R * 0.2126 + pixelColor.G * 0.7152 + pixelColor.B * 0.0722)

  2. Average:grayValue = (int)((pixelColor.R + pixelColor.G + pixelColor.B) / 3)

  3. Lightness (HSL):grayValue = (int)((Math.Max(Math.Max(pixelColor.R, pixelColor.G), pixelColor.B) + Math.Min(Math.Min(pixelColor.R, pixelColor.G), pixelColor.B)) / 2)

  4. Desaturation:grayValue = (int)((Math.Max(Math.Max(pixelColor.R, pixelColor.G), pixelColor.B) + Math.Min(Math.Min(pixelColor.R, pixelColor.G), pixelColor.B)) / 2)

  private void ToolStripMenuItem_Click(object sender, EventArgs e)
  {
      // 读取原始图像
      Bitmap originalImage = new Bitmap(imgpath);
      // 创建一个新的灰度图像
      Bitmap grayImage = new Bitmap(originalImage.Width, originalImage.Height);
      for (int y = 0; y < originalImage.Height; y++)
      {
          for (int x = 0; x < originalImage.Width; x++)
          {
              Color pixelColor = originalImage.GetPixel(x, y);
              int grayValue = (int)(pixelColor.R * 0.299 + pixelColor.G * 0.587 + pixelColor.B * 0.114);
              Color grayColor = Color.FromArgb(grayValue, grayValue, grayValue);
              grayImage.SetPixel(x, y, grayColor);
          }
      }
      ShowImages(originalImage, grayImage);
  }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值