问题:
- 关于使用无监督学习:涉及到头部运动或视频是异构的,基于dl的方法可能比传统的手工方法更健壮。但是,基于dl的rPPG方法需要包括人脸视频和真实生理信号在内的大规模数据集。虽然大量获取人脸视频相对容易,但通过接触传感器测量并与人脸视频同步的地面真实生理信号的获取成本较高。
- 无监督方法与最先进的有监督rPPG方法在性能上仍有很大差距,并且容易受到外部周期性噪声的影响。
创新点:
- 提出了一种新的rPPG表示方法,称为时空rPPG (ST-rPPG)块,用于获取时空维度的rPPG信号。
- 基于rPPG时空相似性和跨视频rPPG不相似性四个方面的观察,提出了一种基于对比学习的无监督方法,能够很好地推广到一个新的数据集。
使用3DCNN模型对输入视频进行处理,得到一个时空rPPG (ST-rPPG)块。从不同时空位置的每个视频中生成多个rPPG信号,并使用对比损失训练模型,其中来自同一视频的rPPG信号被拉到一起,而来自不同视频的rPPG信号被推远。
rPPG的四个假设
- rPPG空间相似性:不同面部区域测量的rPPG信号具有相似的功率谱密度(psd)。
2.rPPG时间相似性:从一个短的rPPG片段(例如10秒)中随机抽取几个小窗口,这些窗口的psd应该是相似的,因为大多数情况下HR倾向于平稳。