一、研究背景与意义
从人脸视频中进行远程HR估计具有广泛的应用,但由于头部运动、照明和传感器多样性的变化,在约束较少的场景中,这是一个具有挑战性的问题。
1.在本文中,提出了一种端到端的RyhthmNet,用于从人脸进行远程HR估计。在RyhthmNet中,时空分布图表示的来自多个ROI区域的HR信号作为其输入,进行HR估计。
2.还考虑了通过门控循环单元(GRU)从视频序列中获得的相邻HR测量的关系,从而实现高效的HR测量。
3.此外,还构建了一个大规模的多模态HR数据库(命名为VIPL-HR1),包含了107名受试者的2,378个可见光视频(VIS)和752个近红外视频(NIR)。VIPL-HR数据库包含各种变化,如头部运动、照明变化和采集设备变化,为HR估计复制了一个较少约束的场景。该方法在公共领域和我们的VIPL-HR数据库上都优于最先进的方法。
二、研究内容
(1)VIPL-HR数据库
1.数据收集:人脸视频记录条件应涵盖环境照明、受试者姿态、采集传感器以复制日常应用场景。
从直方图中,我们可以看到受试者的最大旋转幅度变化很大