数据结构 图

基本概念

图是由顶点集合及顶点间的关系组成的一种数据结构:G = (V, E),
其中:
顶点集合V = {x|x属于某个数据对象集}是有穷非空集合;
E = {(x,y)|x,y属于V}或者E = {<x, y>|x,y属于V && Path(x, y)}是顶点间关系的有穷集合,也叫做边的集合。

(x, y)表示x到y的一条双向通路,即(x, y)是无方向的;Path(x, y)表示从x到y的一条单向通路,即Path(x, y)是有方向的。
**顶点和边:图中结点称为顶点,**第i个顶点记作vi。两个顶点vi和vj相关联称作顶点vi和顶点vj之间有一条边, 图中的第k条边记作ek,ek = (vi,vj)或<vi,vj>。

边:两个顶点+权值

有向图和无向图:在有向图中,顶点对<x, y>是有序的,顶点对<x,y>称为顶点x到顶点y的一条边(弧),<x, y>和<y, x>是两条不同的边,在无向图中,顶点对(x, y)是无序的,顶点对(x,y)称为顶点x和顶点y相关联的一条边,这条边没有特定方向,(x, y)和(y,x)是同一条边,注意:无向边(x,y)等于有向边<x, y>和<y, x>。

G1和G2为无向图。
在这里插入图片描述
G3为有向图。
在这里插入图片描述
完全图在有n个顶点的无向图中,若有n * (n-1)/2条边,即任意两个顶点之间有且仅有一条边,则称此图为无向完全图,如图G1;在n个顶点的有向图中,若有n * (n-1)条边,即任意两个顶点之间有且仅有方向相反的边,则称此图为有向完全图,如图G4

在这里插入图片描述
邻接顶点:在无向图中G中,若(u, v)是E(G)中的一条边,则称u和v互为邻接顶点,并称边(u,v)依附于顶点u和v;在有向图G中,若<u, v>是E(G)中的一条边,则称顶点u邻接到v,顶点v邻接自顶点u,并称边<u, v>与顶点u和顶点v相关联

顶点的度:顶点v的度是指与它相关联的边的条数,记作deg(v)。在有向图中,顶点的度等于该顶点的入度与出度之和,其中顶点v的入度是以v为终点的有向边的条数,记作indev(v);顶点v的出度是以v为起始点的有向边的条数,记作outdev(v)。因此:dev(v) = indev(v) + outdev(v)。注意:对于无向图,顶点的度等于该顶点的入度和出度,即dev(v) = indev(v) = outdev(v)。

路径: 在图G = (V, E)中,若从顶点vi出发有一组边使其可到达顶点vj,则称顶点vi到顶点vj的顶点序列为从顶点vi到顶点vj的路径。

路径长度: 对于不带权的图,一条路径的路径长度是指该路径上的边的条数;对于带权的图,一条路 径的路径长度是指该路径上各个边权值的总和。

在这里插入图片描述
简单路径与回路:若路径上各顶点v1,v2,v3,…,vm均不重复,则称这样的路径为简单路径。若路 径上第一个顶点v1和最后一个顶点vm重合,则称这样的路径为回路或环。
在这里插入图片描述
子图:设图G = {V, E}和图G1 = {V1,E1},若V1属于V且E1属于E,则称G1是G的子图。
在这里插入图片描述
连通图:在无向图中,若从顶点v1到顶点v2有路径,则称顶点v1与顶点v2是连通的。如果图中任意一 对顶点都是连通的,则称此图为连通图。

强连通图:在有向图中,若在每一对顶点vi和vj之间都存在一条从vi到vj的路径,也存在一条从vj到 vi的路径,则称此图是强连通图。

生成树:一个连通图的最小连通子图称作该图的生成树。有n个顶点的连通图的生成树有n个顶点和n- 1条边。

图的存储结构

因为图中既有节点,又有边(节点与节点之间的关系),因此,在图的存储中,只需要保存:节点和边关系即可。节点保存比较简单,只需要一段连续空间即可

邻接矩阵

因为节点与节点之间的关系就是连通与否,即为0或者1,因此邻接矩阵(二维数组)即是:先用一个数组将定点保存,然后采用矩阵来表示节点与节点之间的关系。
在这里插入图片描述

注意:

  • 无向图的邻接矩阵是对称的,第i行(列)元素之和,就是顶点i的度。有向图的邻接矩阵则不一定是对称 的,第i行(列)元素之后就是顶点i的出(入)度。
  • 如果边带有权值,并且两个节点之间是连通的,上图中的边的关系就用权值代替,如果两个顶点不通,则使用无穷大代替。
  • 用邻接矩阵存储图的有点是能够快速知道两个顶点是否连通,缺陷是如果顶点比较多,边比较少时,矩阵中存储了大量的0成为系数矩阵,比较浪费空间,并且要求两个节点之间的路径不

在这里插入图片描述

#pragma once
#include <iostream>
#include <vector>
#include <string>
#include <map>
#include <queue>
using namespace std;

namespace Matrix//邻接矩阵
{
	template<class V, class W,bool Direction = false>//默认是无向
	class Graph
	{
	public:
		Graph(const V* vertexs, size_t n)
		{
			_vertexs.reserve(n);
			for (size_t i = 0; i < n; i++)
			{
				_vertexs.push_back(vertexs[i]);
				_VIndexMap[_vertexs[i]] = i;
			}
			_matrix.resize(n);
			for (auto& e : _matrix)
			{
				e.resize(n);
			}
		}
		size_t GetVertexIndex(const V& v)//得到顶点的下标
		{
			auto ret = _VIndexMap.find(v);
			if (ret !=  _VIndexMap.end())
			{
				return ret->second;
			}
			else
			{
				throw invalid_argument("不存在顶点");
				return -1;

			}

		}
		void AddEdge(const V& src,const V& dst,const W& w)//添加边
		{
			size_t srcindex = GetVertexIndex(src);
			size_t dstindex = GetVertexIndex(dst);

			_matrix[srcindex][dstindex] = w;
			if (Direction == false)
			{
				_matrix[dstindex][srcindex] = w;
			}
			
		}
		void BFS(const V& src)
		{
			size_t srcindex = GetVertexIndex(src);
			vector<bool> visited;//顶点有没有被访问过
			visited.resize(_vertexs.size(),false);

			queue<int> q;
			q.push(srcindex);
			visited[srcindex] = true;
			size_t d = 1;
			size_t dSize = 1;
			while (!q.empty())
			{
				size_t front = q.front();
				q.pop();
				printf("%s的%d度:\n", src.c_str(), d);
				while (dSize--)
				{
					for (size_t i = 0; i < _vertexs.size(); i++)
					{
						if (visited[i] == false && _matrix[srcindex][i] != W())
						{
							printf("[%d:%s] ", i, _vertexs[i].c_str());
							visited[i] = true;
							q.push(i);
						}
					}					
				}
				dSize = q.size();
				++d;
				std::cout << std::endl;
			}
			
		}
		void _DFS(size_t  srcIndex,vector<bool> visited)
		{
			printf("[%d:%s]->", srcIndex, _vertexs[srcIndex].c_str());
			visited[srcIndex] = true;
			for (size_t i = 0; i < _vertexs.size(); i++)
			{
				if (visited[i] == false && _matrix[srcIndex][i] != W())
				{
					_DFS(i, visited);
				}
			}
		}
		void DFS(const V& src)
		{
			size_t srcindex = GetVertexIndex(src);
			vector<bool> visited;//顶点有没有被访问过
			visited.resize(_vertexs.size(), false);

			_DFS(srcindex, visited);
		}
	private:
		vector<V> _vertexs;//顶点集合
		vector<vector<W>> _matrix;//存储边的集合的矩阵
		map<string, int> _VIndexMap;//顶点和下标之间的映射关系
	};
}
优势: 1、快速找到两个顶点之间的边 2、适合于边比较多的图 劣势: 要找一个顶点连出去的边O(N)

邻接表

邻接表:使用数组表示顶点的集合,使用链表表示边的关系。类似哈希桶,把一个相连的边用链式结构挂在后面

无向图邻接表存储:
在这里插入图片描述

无向图中同一条边在邻接表中出现了两次。如果想知道顶点vi的度,只需要知道顶点vi边链表集合中结点的数目即可。

有向图邻接表存储:
在这里插入图片描述

注意:有向图中每条边在邻接表中只出现一次,与顶点vi对应的邻接表所含结点的个数,就是该顶点的出度,也称出度表,要得到vi顶点的入度,必须检测其他所有顶点对应的边链表,看有多少边顶点的dst取值是i。

namespace LinkTable//邻接表
{
	template<class W>
	struct LinkEdge//邻接边
	{
		int _srcIndex;
		int _dstIndex;
		W _w;
		LinkEdge<W>* _next;
		LinkEdge(const W& w)
			:_srcIndex(-1)
			, _dstIndex(-1)
			, _w(w)
			, _next(nullptr)
		{

		}
	};
	template<class V, class W, bool Direction = false>//默认是无向
	class Graph
	{
		typedef LinkEdge<W> Edge;
	public:
		Graph(const V* vertexs, size_t n)
		{
			_vertexs.reserve(n);
			for (size_t i = 0; i < n; i++)
			{
				_vertexs.push_back(vertexs[i]);
				_VIndexMap[_vertexs[i]] = i;
			}
			_linktable.resize(n, nullptr);
		}
		size_t GetVertexIndex(const V& v)//得到顶点的下标
		{
			auto ret = _VIndexMap.find(v);
			if (ret != _VIndexMap.end())
			{
				return ret->second;
			}
			else
			{
				throw invalid_argument("不存在顶点");
				return -1;

			}

		}
		void AddEdge(const V& src, const V& dst, const W& w)//添加边
		{
			size_t srcindex = GetVertexIndex(src);
			size_t dstindex = GetVertexIndex(dst);

			Edge* sd_edge = new Edge(w);
			sd_edge->_srcIndex = srcindex;
			sd_edge->_dstIndex = dstindex;
			//头插
			sd_edge->_next = _linktable[srcindex];
			_linktable[srcindex] = sd_edge;

			if (Direction == false)
			{
				//无向图
				Edge* ds_edge = new Edge(w);
				ds_edge->_srcIndex = dstindex;
				ds_edge->_dstIndex = srcindex;
				ds_edge->_next = _linktable[dstindex];
				_linktable[dstindex] = ds_edge;
			}

		}
	private:
		vector<V> _vertexs;//顶点集合
		map<string, int> _VIndexMap; //顶点和下标之间的映射关系
		vector<Edge*> _linktable;//边的集合的邻接表
	};
}
优势: 1、快速找到相连的点 2、适合于边比较少的图 劣势: 确认两个点是否相连是O(N)

图的遍历

给定一个图G和其中任意一个顶点v0,从v0出发,沿着图中各边访问图中的所有顶点,且每个顶点仅被遍历一次。"遍历"即对结点进行某种操作的意思。

图的广度优先遍历

在这里插入图片描述

在这里插入图片描述

include <iostream>
#include <vector>
#include <string>
#include <map>
#include <queue>
using namespace std;

namespace Matrix//邻接矩阵
{
	template<class V, class W,bool Direction = false>//默认是无向
	class Graph
	{
	public:
		Graph(const V* vertexs, size_t n)
		{
			_vertexs.reserve(n);
			for (size_t i = 0; i < n; i++)
			{
				_vertexs.push_back(vertexs[i]);
				_VIndexMap[_vertexs[i]] = i;
			}
			_matrix.resize(n);
			for (auto& e : _matrix)
			{
				e.resize(n);
			}
		}
		size_t GetVertexIndex(const V& v)//得到顶点的下标
		{
			auto ret = _VIndexMap.find(v);
			if (ret !=  _VIndexMap.end())
			{
				return ret->second;
			}
			else
			{
				throw invalid_argument("不存在顶点");
				return -1;

			}

		}
		void AddEdge(const V& src,const V& dst,const W& w)//添加边
		{
			size_t srcindex = GetVertexIndex(src);
			size_t dstindex = GetVertexIndex(dst);

			_matrix[srcindex][dstindex] = w;
			if (Direction == false)
			{
				_matrix[dstindex][srcindex] = w;
			}
			
		}
		void BFS(const V& src)
		{
			size_t srcindex = GetVertexIndex(src);
			vector<bool> visited;//顶点有没有被访问过
			visited.resize(_vertexs.size(),false);

			queue<int> q;
			q.push(srcindex);
			visited[srcindex] = true;
			size_t d = 1;
			size_t dSize = 1;
			while (!q.empty())
			{
				size_t front = q.front();
				q.pop();
				printf("%s的%d度:\n", src.c_str(), d);
				while (dSize--)
				{
					for (size_t i = 0; i < _vertexs.size(); i++)
					{
						if (visited[i] == false && _matrix[srcindex][i] != W())
						{
							printf("[%d:%s] ", i, _vertexs[i].c_str());
							visited[i] = true;
							q.push(i);
						}
					}					
				}
				dSize = q.size();
				++d;
				std::cout << std::endl;
			}
			
		}
	private:
		vector<V> _vertexs;//顶点集合
		vector<vector<W>> _matrix;//存储边的集合的矩阵
		map<string, int> _VIndexMap;//顶点和下标之间的映射关系
	};

	void Test()
	{
		string a[] = { "zs", "ls", "ww", "zl" ,"mk"};
		Graph<string, int> g1(a, sizeof(a) / sizeof(string));
		g1.AddEdge("zs","ls",100);
		g1.AddEdge("zs", "ww",200);
		g1.AddEdge("ww", "zl",300);
		g1.AddEdge("ww", "mk", 300);
		g1.BFS("zs");

	}
}

在这里插入图片描述

图的深度优先

在这里插入图片描述
在这里插入图片描述

#pragma once
#include <iostream>
#include <vector>
#include <string>
#include <map>
#include <queue>
using namespace std;

namespace Matrix//邻接矩阵
{
	template<class V, class W,bool Direction = false>//默认是无向
	class Graph
	{
	public:
		Graph(const V* vertexs, size_t n)
		{
			_vertexs.reserve(n);
			for (size_t i = 0; i < n; i++)
			{
				_vertexs.push_back(vertexs[i]);
				_VIndexMap[_vertexs[i]] = i;
			}
			_matrix.resize(n);
			for (auto& e : _matrix)
			{
				e.resize(n);
			}
		}
		size_t GetVertexIndex(const V& v)//得到顶点的下标
		{
			auto ret = _VIndexMap.find(v);
			if (ret !=  _VIndexMap.end())
			{
				return ret->second;
			}
			else
			{
				throw invalid_argument("不存在顶点");
				return -1;

			}

		}
		void AddEdge(const V& src,const V& dst,const W& w)//添加边
		{
			size_t srcindex = GetVertexIndex(src);
			size_t dstindex = GetVertexIndex(dst);

			_matrix[srcindex][dstindex] = w;
			if (Direction == false)
			{
				_matrix[dstindex][srcindex] = w;
			}
			
		}
		void BFS(const V& src)
		{
			size_t srcindex = GetVertexIndex(src);
			vector<bool> visited;//顶点有没有被访问过
			visited.resize(_vertexs.size(),false);

			queue<int> q;
			q.push(srcindex);
			visited[srcindex] = true;
			size_t d = 1;
			size_t dSize = 1;
			while (!q.empty())
			{
				size_t front = q.front();
				q.pop();
				printf("%s的%d度:\n", src.c_str(), d);
				while (dSize--)
				{
					for (size_t i = 0; i < _vertexs.size(); i++)
					{
						if (visited[i] == false && _matrix[srcindex][i] != W())
						{
							printf("[%d:%s] ", i, _vertexs[i].c_str());
							visited[i] = true;
							q.push(i);
						}
					}					
				}
				dSize = q.size();
				++d;
				std::cout << std::endl;
			}
			
		}
		void _DFS(size_t  srcIndex,vector<bool> visited)
		{
			printf("[%d:%s]->", srcIndex, _vertexs[srcIndex].c_str());
			visited[srcIndex] = true;
			for (size_t i = 0; i < _vertexs.size(); i++)
			{
				if (visited[i] == false && _matrix[srcIndex][i] != W())
				{
					_DFS(i, visited);
				}
			}
		}
		void DFS(const V& src)
		{
			size_t srcindex = GetVertexIndex(src);
			vector<bool> visited;//顶点有没有被访问过
			visited.resize(_vertexs.size(), false);

			_DFS(srcindex, visited);
		}
	private:
		vector<V> _vertexs;//顶点集合
		vector<vector<W>> _matrix;//存储边的集合的矩阵
		map<string, int> _VIndexMap;//顶点和下标之间的映射关系
	};

	void Test()
	{
		string a[] = { "zs", "ls", "ww", "zl" ,"mk"};
		Graph<string, int> g1(a, sizeof(a) / sizeof(string));
		g1.AddEdge("zs","ls",100);
		g1.AddEdge("zs", "ww",200);
		g1.AddEdge("ww", "zl",300);
		g1.AddEdge("ww", "mk", 300);
		
		g1.DFS("zs");

	}
}

在这里插入图片描述

最小生成树

连通图中的每一棵生成树,都是原图的一个极大无环子图,即:从其中删去任何一条边,生成树就不在连通;反之,在其中引入任何一条新边,都会形成一条回路。

若连通图由n个顶点组成,则其生成树必含n个顶点和n-1条边。
构造最小生成树的准则:

  • 只能使用图中的边来构造最小生成树
  • 只能使用恰好n-1条边来连接图中的n个顶点
  • 选用的n-1条边不能构成回路

构造最小生成树的方法:Kruskal算法和Prim算法。这两个算法都采用了逐步求解的贪心策略。
贪心算法:是指在问题求解时,总是做出当前看起来最好的选择。也就是说贪心算法做出的不是整体 最优的的选择,而是某种意义上的局部最优解。贪心算法不是对所有的问题都能得到整体最优解。

Kruskal算法

任给一个有n个顶点的连通网络N={V,E},
首先构造一个由这n个顶点组成、不含任何边的图G={V,NULL},其中每个顶点自成一个连通分量,
其次不断从E中取出权值最小的一条边(若有多条任取其一),若该边的两个顶点来自不同的连通分量,则将此 边加入到G中。
如此重复,直到所有顶点在同一个连通分量上为止。 核心:每次迭代时,选出一条具有最小权值,且两端点不在同一连通分量上的边,加入生成树。

思路:每次都去选剩下的边里面的最小的边去加入生成树,看是否构成循环,不构成环,就加入;构成环就不加入,直到选出N-1条边
在这里插入图片描述
实现角度:建议并查集
1、先判断加入的边的两个顶点在不在一个集合中,在-》加入构成环
2、加入的边,就把它的两个顶点合并

用最少的边,联通顶点,且边的权值加起来是最小的
W Kruskal(Self& minTree)
{
     minTree._vertexs = _vertexs;
     minTree._vIndexMap = _vIndexMap;
     minTree._matrix.resize(_vertexs.size());
     for (auto& e : minTree._matrix)
     {
         e.resize(_vertexs.size(), MAX_W);
     }
     priority_queue<Edge, vector<Edge>, greater<Edge>> pq;
     for (size_t i = 0; i < _matrix.size(); ++i)
     {
         for (size_t j = 0; j < _matrix[i].size(); ++j)
         {
             if (i < j && _matrix[i][j] != MAX_W)
             {
                 pq.push(Edge(i, j, _matrix[i][j]));
             }
         }
     }
     W total = W();
     // 贪心算法,从最小的边开始选
     size_t i = 1;
     UnionFindSet ufs(_vertexs.size());
     while (i < _vertexs.size() && !pq.empty())
     {
         Edge min = pq.top();
         pq.pop();
         // 边不在一个集合,说明不会构成环,则添加到最小生成树
         if (ufs.FindRoot(min._srci) != ufs.FindRoot(min._dsti))
         {
             //cout << _vertexs[min._srci] << "-" << _vertexs[min._dsti] << 
":" << _matrix[min._srci][min._dsti] << endl;
             minTree._AddEdge(min._srci, min._dsti, min._w);
             total += min._w;
             ufs.Union(min._srci, min._dsti);
             ++i;
         }
     }
     if (i == _vertexs.size())
     {
         return total;
     }
     else
     {
         return W();
     }
}
Prime算法

在这里插入图片描述
区别:

  • 选取最小的那条边
  • 已选好的边里面的顶点的邻接中最小的边–天然避开环
W Prim(Self& minTree, const W& src)
		{
			size_t srci = GetVertexIndex(src);
			size_t n = _vertexs.size();

			minTree._vertexs = _vertexs;
			minTree._indexMap = _indexMap;
			minTree._matrix.resize(n);
			for (size_t i = 0; i < n; ++i)
			{
				minTree._matrix[i].resize(n, MAX_W);
			}

			/*set<int> X;
			set<int> Y;
			X.insert(srci);
			for (size_t i = 0; i < n; ++i)
			{
				if (i != srci)
				{
					Y.insert(i);
				}
			}*/

			vector<bool> X(n, false);
			vector<bool> Y(n, true);
			X[srci] = true;
			Y[srci] = false;

			// 从X->Y集合中连接的边里面选出最小的边
			priority_queue<Edge, vector<Edge>, greater<Edge>> minq;
			// 先把srci连接的边添加到队列中
			for (size_t i = 0; i < n; ++i)
			{
				if (_matrix[srci][i] != MAX_W)
				{
					minq.push(Edge(srci, i, _matrix[srci][i]));
				}
			}

			cout << "Prim开始选边" << endl;
			size_t size = 0;
			W totalW = W();
			while (!minq.empty())
			{
				Edge min = minq.top();
				minq.pop();

				// 最小边的目标点也在X集合,则构成环
				if (X[min._dsti])
				{
					//cout << "构成环:";
					//cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;
				}
				else
				{
					minTree._AddEdge(min._srci, min._dsti, min._w);
					//cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;
					X[min._dsti] = true;
					Y[min._dsti] = false;
					++size;
					totalW += min._w;
					if (size == n - 1)
						break;

					for (size_t i = 0; i < n; ++i)
					{
						if (_matrix[min._dsti][i] != MAX_W && Y[i])
						{
							minq.push(Edge(min._dsti, i, _matrix[min._dsti][i]));
						}
					}
				}
			}

			if (size == n - 1)
			{
				return totalW;
			}
			else
			{
				return W();
			}
		}

最短路径

单源最短路径径–Dijkstra算法

最短路径问题:从在带权图的某一顶点出发,找出一条通往另一顶点的最短路径,最短也就是沿路径各边的权值总和达到最小。

单源最短路径问题:给定一个图G = ( V , E ) G=(V,E)G=(V,E),求源结点s ∈ V s∈Vs∈V到图中每个结点v ∈ V v∈Vv∈V的最短路径。Dijkstra算法就适用于解决带权重的有向图上的单源最短路径问题,同时算法要求图中所有边的权重非负。一般在求解最短路径的时候都是已知一个起点和一个终点,所以使用Dijkstra算法求解过后也就得到了所需起点到终点的最短路径。

针对一个带权有向图G,将所有结点分为两组S和Q,S是已经确定最短路径的结点集合,在初始时为空(初始时就可以将源节点s放入,毕竟源节点到自己的代价是0),Q 为其余未确定最短路径 的结点集合,每次从Q中找出一个起点到该结点代价最小的结点u ,将u 从Q 中移出,并放入S 中,对u 的每一个相邻结点v进行松弛操作。松弛即对每一个相邻结点v ,判断源节点s到结点u 的代价与u 到v 的代价之和是否比原来s 到v的代价更小,若代价比原来小则要将s 到v 的代价更新 为s 到u 与u 到v 的代价之和,否则维持原样。如此一直循环直至集合Q 为空,即所有节点都已经 查找过一遍并确定了最短路径,至于一些起点到达不了的结点在算法循环后其代价仍为初始设定 的值,不发生变化。Dijkstra算法每次都是选择V-S中最小的路径节点来进行更新,并加入S中,所 以该算法使用的是贪心策略。

一个源点跟图中其他所有点相连的最短路径
Dijkstra算法存在的问题是不支持图中带负权路径,如果带有负权路径,则可能会找不到一些路
径的最短路径。

在这里插入图片描述

  • 依次找里0距离最短的邻接顶点来松弛更新
    在这里插入图片描述
// 顶点个数是N  -> 时间复杂度:O(N^2)空间复杂度:O(N)
		void Dijkstra(const V& src, vector<W>& dist, vector<int>& pPath)
		{
			size_t srci = GetVertexIndex(src);
			size_t n = _vertexs.size();
			dist.resize(n, MAX_W);
			pPath.resize(n, -1);

			dist[srci] = 0;
			pPath[srci] = srci;

			// 已经确定最短路径的顶点集合
			vector<bool> S(n, false);

			for (size_t j = 0; j < n; ++j)
			{
				// 选最短路径顶点且不在S更新其他路径
				int u = 0;
				W min = MAX_W;
				for (size_t i = 0; i < n; ++i)
				{
					if (S[i] == false && dist[i] < min)
					{
						u = i;
						min = dist[i];
					}
				}

				S[u] = true;
				// 松弛更新u连接顶点v  srci->u + u->v <  srci->v  更新
				for (size_t v = 0; v < n; ++v)
				{
					if (S[v] == false && _matrix[u][v] != MAX_W
						&& dist[u] + _matrix[u][v] < dist[v])
					{
						dist[v] = dist[u] + _matrix[u][v];
						pPath[v] = u;
					}
				}
			}
		}
单源最短路径–Bellman-Ford算法

Dijkstra算法只能用来解决正权图的单源最短路径问题,但有些题目会出现负权图。这时这个算法就不能帮助我们解决问题了,而bellman—ford算法可以解决负权图的单源最短路径问题。它的优点是可以解决有负权边的单源最短路径问题,而且可以用来判断是否有负权回路。它也有明显的缺点,它的时间复杂度 O(N*E) (N是点数,E是边数)普遍是要高于Dijkstra算法O(N²)的。像这里如果我们使用邻接矩阵实现,那么遍历所有边的数量的时间复杂度就是O(N^3),这里也可以看出来Bellman-Ford就是一种暴力求解更新。

// 时间复杂度:O(N^3) 空间复杂度:O(N)
		bool BellmanFord(const V& src, vector<W>& dist, vector<int>& pPath)
		{
			size_t n = _vertexs.size();
			size_t srci = GetVertexIndex(src);

			// vector<W> dist,记录srci-其他顶点最短路径权值数组
			dist.resize(n, MAX_W);

			// vector<int> pPath 记录srci-其他顶点最短路径父顶点数组
			pPath.resize(n, -1);

			// 先更新srci->srci为缺省值
			dist[srci] = W();

			//cout << "更新边:i->j" << endl;


			// 总体最多更新n轮
			for (size_t k = 0; k < n; ++k)
			{
				// i->j 更新松弛
				bool update = false;
				cout << "更新第:" << k << "轮" << endl;
				for (size_t i = 0; i < n; ++i)
				{
					for (size_t j = 0; j < n; ++j)
					{
						// srci -> i + i ->j
						if (_matrix[i][j] != MAX_W && dist[i] + _matrix[i][j] < dist[j])
						{
							update = true;
							cout << _vertexs[i] << "->" << _vertexs[j] << ":" << _matrix[i][j] << endl;
							dist[j] = dist[i] + _matrix[i][j];
							pPath[j] = i;
						}
					}
				}

				// 如果这个轮次中没有更新出更短路径,那么后续轮次就不需要再走了
				if (update == false)
				{
					break;
				}
			}


			// 还能更新就是带负权回路
			for (size_t i = 0; i < n; ++i)
			{
				for (size_t j = 0; j < n; ++j)
				{
					// srci -> i + i ->j
					if (_matrix[i][j] != MAX_W && dist[i] + _matrix[i][j] < dist[j])
					{
						return false;
					}
				}
			}

			return true;
		}
多源最短路径–Floyd-Warshall算法

多源最短路指的是执行一次该算法之后,我们能得到任意点之间的最短路径,

Floyd-Warshall算法是解决任意两点间的最短路径的一种算法。
Floyd算法考虑的是一条最短路径的中间节点,即简单路径p={v1,v2,…,vn}上除v1和vn的任意节
点。
设k是p的一个中间节点,那么从i到j的最短路径p就被分成i到k和k到j的两段最短路径p1,p2。p1
是从i到k且中间节点属于{1,2,…,k-1}取得的一条最短路径。p2是从k到j且中间节点属于{1,
2,…,k-1}取得的一条最短路径。

在这里插入图片描述

图里面任意两个顶点之间最短路径

在这里插入图片描述

矩阵来表示图中任意两点之间的距离

//图中任意两点,借助k为中转点找更新
//中转点 k = 1,2,3 ...
for (int k = 0; k < n; k++)
{
	for (int i = 0; i < n; i++)
	{
		for (int j = 0; j < n; j++)
		{
			if (e[i][k] + e[k][j] < e[i][j])
			{
				e[i][j] = e[i][k] + e[k][j];
			}
		}
	}
}
void FloydWarshall(vector<vector<W>>& vvDist, vector<vector<int>>& vvpPath)
		{
			size_t n = _vertexs.size();
			vvDist.resize(n);
			vvpPath.resize(n);

			// 初始化权值和路径矩阵
			for (size_t i = 0; i < n; ++i)
			{
				vvDist[i].resize(n, MAX_W);
				vvpPath[i].resize(n, -1);
			}

			// 直接相连的边更新一下
			for (size_t i = 0; i < n; ++i)
			{
				for (size_t j = 0; j < n; ++j)
				{
					if (_matrix[i][j] != MAX_W)
					{
						vvDist[i][j] = _matrix[i][j];
						vvpPath[i][j] = i;
					}

					if (i == j)
					{
						vvDist[i][j] = W();
					}
				}
			}

			// abcdef  a {} f ||  b {} c
			// 最短路径的更新i-> {其他顶点} ->j
			for (size_t k = 0; k < n; ++k)
			{
				for (size_t i = 0; i < n; ++i)
				{
					for (size_t j = 0; j < n; ++j)
					{
						// k 作为的中间点尝试去更新i->j的路径
						if (vvDist[i][k] != MAX_W && vvDist[k][j] != MAX_W
							&& vvDist[i][k] + vvDist[k][j] < vvDist[i][j])
						{
							vvDist[i][j] = vvDist[i][k] + vvDist[k][j];

							// 找跟j相连的上一个邻接顶点
							// 如果k->j 直接相连,上一个点就k,vvpPath[k][j]存就是k
							// 如果k->j 没有直接相连,k->...->x->j,vvpPath[k][j]存就是x

							vvpPath[i][j] = vvpPath[k][j];
						}
					}
				}

				// 打印权值和路径矩阵观察数据
				for (size_t i = 0; i < n; ++i)
				{
					for (size_t j = 0; j < n; ++j)
					{
						if (vvDist[i][j] == MAX_W)
						{
							//cout << "*" << " ";
							printf("%3c", '*');
						}
						else
						{
							//cout << vvDist[i][j] << " ";
							printf("%3d", vvDist[i][j]);
						}
					}
					cout << endl;
				}
				cout << endl;

				for (size_t i = 0; i < n; ++i)
				{
					for (size_t j = 0; j < n; ++j)
					{
						//cout << vvParentPath[i][j] << " ";
						printf("%3d", vvpPath[i][j]);
					}
					cout << endl;
				}
				cout << "=================================" << endl;
			}
		}

	private:
		vector<V> _vertexs;			// 顶点集合
		map<V, int> _indexMap;		// 顶点映射下标
		vector<vector<W>> _matrix;  // 邻接矩阵
	};
  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值