spgwr | R语言与地理加权回归(Ⅰ-1):线性地理加权回归

本文介绍了R语言中spgwr包的使用,特别是如何进行线性地理加权回归(GWR)。通过gwr()函数执行模型,参数包括模型公式、数据源、坐标信息和带宽等。带宽的确定可通过gwr.sel()函数,利用交叉验证或AIC准则。GWR相对于传统线性回归,考虑了地理位置的影响,提供了更局部化的估计。距离加权函数如高斯、双平方等控制了邻近点的影响。示例展示了GWR模型的建立和结果解析,结果以list形式返回,可进一步进行可视化和分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

地理加权回归(Geographically Weighted Regression, GWR)经过多年发展,已经具备了多种形式,在R语言中也对应着多个工具包,其中spgwr是一个开发较早、比较经典的工具包,功能也相对基础。

library(spgwr)

在该包中,运行线性地理加权回归的函数是gwr()。语法结构如下:

gwr(formula, data = list(), coords,
    bandwidth, gweight = gwr.Gauss, 
    adapt = NULL, hatmatrix = FALSE, fit.points,
    longlat = NULL, se.fit = FALSE, weights,
    cl = NULL, predictions = FALSE, 
    fittedGWRobject = NULL, se.fit.CCT = TRUE)

本篇先介绍它的几个主要的参数:

参数含义及格式
formula模型表达式;
data数据源;可以为普通的数据框,也可以为sp格式的矢量对象
coords坐标信息,当data参数是普通数据框时,需要提供该参数
bandwidth带宽
gweight距离加权函数

该包目前的版本号是0.6-34,还不支持sf格式的矢量对象。

数据源

library(rgdal)
NY8 <- readOGR(system.file("shapes/NY8_utm18.shp",
                           package = "spData"))

模型形式

form <- Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME

带宽

带宽(bandwidth)确定了局部的范围,该包的gwr.sel()函数提供了两种确定带宽的方法:交叉验证法和AIC信息准则法。语法结构如下:

gwr.sel(formula, data = list(),
        coords, adapt = FALSE, gweight = gwr.Gauss,
        method = "cv", verbose = TRUE,
        longlat = NULL, RMSE = FALSE, weights,
        tol = .Machine$double.eps^0.25,
        show.error.messages = FALSE)
  • method:可选项有cv(交叉验证)、aic(AIC准则)。

bw <- gwr.sel(formula = form, data = NY8,
              gweight = gwr.Gauss, method = "cv")
bw
## [1] 179942.6

formuladatagweight参数需要与gwr()函数的对应参数保持一致。

距离加权函数

距离加权函数是一个随距离增加而逐渐衰减的函数,该包提供了4种地理加权函数:gwr.gaussgwr.Gauss(默认)、gwr.bisquaregwr.tricube

b表示带宽,d表示距离。以d = 100为例:

完整形式

线性回归:

model.lm <- lm(formula = form, data = NY8@data)
summary(model.lm)
## 
## Call:
## lm(formula = form, data = NY8@data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.7417 -0.3957 -0.0326  0.3353  4.1398 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.51728    0.15856  -3.262  0.00124 ** 
## PEXPOSURE    0.04884    0.03506   1.393  0.16480    
## PCTAGE65P    3.95089    0.60550   6.525 3.22e-10 ***
## PCTOWNHOME  -0.56004    0.17031  -3.288  0.00114 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6571 on 277 degrees of freedom
## Multiple R-squared:  0.1932, Adjusted R-squared:  0.1844 
## F-statistic:  22.1 on 3 and 277 DF,  p-value: 7.306e-13

线性地理加权回归:

library(rgdal)
NY8 <- readOGR(system.file("shapes/NY8_utm18.shp",
                           package = "spData"))
form <- Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME
bw <- gwr.sel(formula = form, data = NY8,
              gweight = gwr.Gauss, method = "cv")

model <- gwr(formula = form, data = NY8,
             bandwidth = bw, gweight = gwr.Gauss)
model
## Call:
## gwr(formula = form, data = NY8, bandwidth = bw, gweight = gwr.Gauss)
## Kernel function: gwr.Gauss 
## Fixed bandwidth: 179942.6 
## Summary of GWR coefficient estimates at data points:
##                   Min.   1st Qu.    Median   3rd Qu.      Max.  Global
## X.Intercept. -0.522172 -0.520740 -0.520154 -0.514439 -0.511092 -0.5173
## PEXPOSURE     0.047176  0.048032  0.049527  0.049722  0.050477  0.0488
## PCTAGE65P     3.911526  3.933832  3.959192  3.962334  3.979552  3.9509
## PCTOWNHOME   -0.559358 -0.557968 -0.557682 -0.555498 -0.554563 -0.5600

模型结果的数据结构是list,模型的主要结果在下图红框所示的位置:

以截距为例进行可视化:

library(sf)
NY8_sf <- st_as_sf(NY8)
NY8_sf$Intercept <- model$SDF@data$X.Intercept.

plot(NY8_sf["Intercept"])

参考文献:
https://mirrors.tuna.tsinghua.edu.cn/CRAN/web/packages/spgwr/spgwr.pdf

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值