mAPm: multi-scale Attention Pyramid module forEnhanced scale-variation in RLD detection【文献自读】

摘要:检测不同尺度的物体是计算机视觉的一个重要挑战,特别是在水稻叶病(RLD)检测等任务中,物体表现出相当大的尺度变化。传统的目标检测方法往往难以解决这些变化,导致漏检或精度下降。在这项研究中,我们提出了多尺度注意金字塔模块(mAPm),这是一种将扩张卷积集成到特征金字塔网络(FPN)中以增强多尺度信息提取的新方法。此外,我们结合了全局多头自注意力(MHSA)机制和反卷积层来细化上采样过程。我们使用 MRLD 和 COCO 数据集评估 YOLOv7 上的 mAPm。与普通FPN、BiFPN、NAS-FPN、PANet和ACFPN相比,mAPm在平均精度(AP)方面取得了显著的改进,MRLD数据集上比基线FPN方法提高了+2.61%。这证明了它在处理尺度变化方面的有效性。此外,mAPm的多功能性使其能够集成到各种基于fpn的目标检测模型中,展示了它推进目标检测技术的潜力。

关键词:注意力机制、特征金字塔网络、目标检测、尺度变化。

1.introduction

尽管目标检测在计算机视觉(CV)中取得了成功,但在任务目标和约束方面仍然面临着一些真正的挑战。一个这样的问题是尺度变化,因为对象检测器需要检测不同尺度的对象[1]。尺度变化可以是对象大小或框纵横比的变化。例如,对象在来自不同距离的相机中查看,这会导致对象边界框的变化,而一些对象可能非常平坦或薄(叶子、刀、叉、水墨棒等)。本质上,对象以任意大小出现,从整个图像到几个像素。即使在最有效的对象检测器[2]中,在这个范围内对对象的广泛搜索也提出了重大挑战。这一挑战在我们的特定场景中尤为明显,其中目标检测必须识别水稻叶病(RLD),特别是开放的领域。为了以简单性和特异性解决这个问题,我们集中精力来增强 YOLOv7 [3] 对象检测尺度变化。如果 RLD 检测中没有正确解决尺度变化,则会导致漏检、误报并降低整体精度 [4]。例如,如果一个对象检测器被设计为只检测一定大小的对象,它可能会错过检测器接受域之外更小或更大的对象。或者,如果检测器被设计为检测不同大小的对象,则检测特定形状的对象可能不太准确。为了增强RLD检测对象的尺度变化,我们的目标是提高目标检测算法的精度和鲁棒性,使我们能够准确地检测和分类图像中不同大小和形状的对象。这具有重要的实际应用,例如农业疾病监测、遥感、监视和灾害响应,其中准确的目标检测对于决策和响应规划至关重要。

图1所示。显示了由于对象特征的变化而面临基线FPN的挑战,导致漏检,如(a)所示。相比之下,我们的方法增强了缩放变化,在检测中实现了 25% 的平均精度,如 (b) 所示。在图中,白色锚点代表ground-truth注释,红色锚点表示预测边界框。

图 2 显示了基线 FPN 的准确性降低,如 (a) 所示。然后,我们的方法提高了尺度变化,从而提高了精度,如 (b) 所示。请注意,白色锚点代表ground-truth注释,而红色锚点表示预测的b-box。

以前的FPN模块已经被提出来处理目标检测早期尺度变化的挑战,一种方法是在不同的尺度上使用图像p

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值