ADA-YOLO: DYNAMIC FUSION OF YOLOV8 AND ADAPTIVEHEADS FOR PRECISE IMAGE DETECTION AND DIAGNOSIS(自读笔记)

论文介绍了一种名为ADA-YOLO的新方法,将YOLOv8与自适应头部相结合,以解决医学图像分析中的目标检测问题。ADA-YOLO在血液细胞检测中展现出比YOLOv8更高的精度,同时降低了计算资源需求,适用于移动设备或边缘计算。自适应头部利用动态视觉特征定位和并行回归,提高了对小目标的检测精度和计算效率。
摘要由CSDN通过智能技术生成

论文:https://doi.org/10.48550/arXiv.2312.10099

摘要:

目标检测与定位是生物医学图像分析的关键任务,特别是在血液学领域,血液细胞的检测和识别对于诊断和治疗决策至关重要(在医学方面的重要性)。虽然基于注意力的方法在不同领域的目标检测方面取得了重大进展,但由于医学成像数据集带来的独特挑战,它们在医学目标检测中的应用受到了限制。为了解决这个问题,我们提出了 ADA-YOLO,这是一种轻量级但有效的方法,用于将基于注意力的机制与 YOLOv8 架构相结合。我们提出的方法通过自适应头部模块利用动态特征定位和并行回归来完成计算机视觉任务。在血细胞计数和检测(BCCD)数据集上进行了实证实验,以评估ADA-YOLO的有效性。结果表明,ADA-YOLO在BCCD数据集上的mAP(平均精度)上比YOLOv8模型高出3倍以上,空间比YOLOv8低3倍。这表明我们提出的方法是有效的。此外,我们提出的方法的轻量级特性使其适合部署在移动设备或边缘计算系统等资源受限的环境中。这最终可以提高血液学领域的诊断和治疗结果。

1.intro

近年来,目标检测技术取得了重大进展,能够自动识别和定位解剖结构、病变或异常。近年来,由于大规模注释数据集的可用性和深度学习技术的发展,目标检测方法取得了重大进展。这些技术在改善医疗诊断和治疗结果方面显示出巨大潜力。

在深度学习出现之前,医学成像中用于目标检测的传统方法依赖于手工制作的特征和机器学习算法。这些方法,如模板匹配、基于边缘的检测器、主动形状模型和可变形模型,受到复杂结构、类间变异性和泛化能力有限[1]的斗争的限制。卷积神经网络 (CNN) 的出现通过能够从原始图像数据中端到端学习特征表示来彻底改变了对象检测,从而开发了基于深度学习的对象检测框架,并显着提高了性能。Faster R-CNN[2]等基于区域的方法是最早成功的基于深度学习的目标检测框架之一,并已被应用于医学成像领域,以检测肿瘤、器官和解剖标志[3,4,5,6,7,8]。例如,Wang et al.[7]开发了ChestX-ray8数据库,这是一个大规模数据集,用于胸部x光片的胸部疾病的弱监督分类和定位。他们的工作展示了基于深度学习的arXiv:2312.10099v1 [cs.CV] 14 Dec 2023 算法以 97.3% 的准确率准确检测肺结节。Gulshan等人[4]开发了一种深度学习算法,在检测糖尿病视网膜病变方面达到了94%的准确率。这展示了对象检测技术作为早期发现和诊断该条件的工具的潜力。在一定程度上探索了其他潜在的应用。YOLO[9]和SSD[10]等单次方法实现了实时推理速度,并已被用于病变检测、细胞检测和器官定位[11]等任务。基于注意力的方法选择性地关注图像的相关区域以提高检测精度,最近开始在医学目标检测中受到关注,利用特定领域的知识和规范来提高检测性能[2]。迁移学习,涉及微调在医学成像数据集上的 ImageNet 等大规模数据集上训练的预训练模型,即使在训练数据有限的情况下,也促进了各种医疗应用中稳健和准确的检测器的发展 [1, 12]。

虽然目标检测技术在医学上具有很大的前景,但需要解决挑战。一个这样的挑战是需要大量带注释的数据来训练深度学习算法。收集和注释医疗数据可能既耗时又昂贵。其次,深度学习算法的可解释性仍然是一个问题,因为理解这些算法的决策过程对于医疗专业人员来说可能具有挑战性。

(挑战)

本文的结构以这种方式组织。第一部分介绍了医学图像检测技术的发展。第二部分介绍了所提出的 ADA-YOLO 方法背后的理论和基础。在第三部分中,ADA-YOLO 方法与其他方法进行了几个对比实验。最后一部分总结了完整的研究,并展望了未来的工作。(总结结构)

简而言之,本文的主要贡献如下:

•我们提出了一种轻量级但功能强大的目标检测模型ADA-YOLO,它的有效性已通过实证实验证明,在mAP(平均平均精度)方面优于YOLOv8,在精度和召回指标之间也取得了令人印象深刻的平衡;同时,该模型在训练过程中具有内存效率,在便携式场景和云边缘协作方面显示出巨大的潜力。

• 我们深入研究了 YOLOv8 架构的复杂性,并设计了一个有效的目标检测组件,称为自适应头(AH),它结合了动态视觉特征定位(DVF)和联合引导回归模块(JGR),允许并行计算边界框回归和类预测,从而实现更精确的目标定位,从而提高检测精度,同时由于并行机制,实现了更好的计算效率。

• 在整个广泛的实验中,我们展示了所提出的框架不仅在多类图像分类方面具有更好的性能,而且还展示了它处理多尺度目标检测任务的能力,在面对重叠和类不平衡现象的小物体时打破了 YOLOx 模型的技术瓶颈。

2.Related Work

2.1 R-CNN

基于区域的卷积神经网络或简称R-CNNs是一类流行的深度学习模型,广泛用于图像中的目标检测。R-CNN 架构背后的基本思想是首先使用选择性搜索算法识别图像中感兴趣的区域 (RoI)。然后将这些 RoI 输入到卷积神经网络 (CNN) 中以提取特征。然后使用提取的特征对对象进行分类和细化roi。原始 R-CNN 模型由 [?] 提出,并在当时的几个对象检测基准上取得了最先进的性能。然而,它的计算复杂度是一个瓶颈,因为它需要为每个 RoI 单独运行 CNN,这使得它对于实时应用是不切实际的。为了提高效率和准确性,随后的几项工作解决了这一限制。

Fast R-CNN [13] 通过添加 RoI 池化层来增强原始 R-CNN,这有助于网络的端到端训练。这意味着分类和边界框回归都是联合学习的,与原始 R-CNN 不同,后者这些任务是独立学习的。此外,Fast R-CNN 无需将 RoI 扭曲

  • 25
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
MSFT-YOLO是基于Transformer模型改进的Yolov5用于检测SE(电子元器件)缺陷的方法。 Transformer是一种先进的神经网络架构,主要用于自然语言处理任务,但在计算机视觉领域也得到了广泛应用。Yolov5则是一种经典的目标检测算法,通过将图像分成多个网格单元并预测每个单元中的物体,实现了实时目标检测。 在MSFT-YOLO中,我们将Transformer应用于Yolov5的特征提取阶段,以提高对SE缺陷的检测能力。传统的Yolov5使用的是卷积神经网络作为特征提取器,但这种方法在处理复杂的缺陷图像时可能会存在一定的局限性。 通过引入Transformer,我们可以将图像中的每个像素看作是一组序列数据,并利用Transformer的自注意力机制来捕捉不同位置之间的依赖关系。这种方式可以提取出更具语义信息的特征表示,从而有效地检测SE缺陷。 在训练过程中,我们使用大量带有标注的SE缺陷图像来优化网络参数。通过进行端到端的训练,我们可以不断调整网络权重以提高检测精度。此外,我们还可以使用数据增强技术来扩增数据集,从而提升模型的鲁棒性和泛化能力。 实验结果表明,MSFT-YOLO相较于传统的Yolov5在SE缺陷检测方面取得了更好的性能。它能够识别出更多的缺陷类型,同时还具备较低的误检率。这使得它在工业制造等领域中有着广泛的应用前景,能够提高产品质量和生产效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值