实验报告 多元分析方法及实例应用

多元分析是多变量的统计分析方法,应用方面非常广阔,内容庞大,视角独特,实用性强,深受工程技术人员的青睐,在很多工程中应用广泛,且被不断地完善和改进。

1.3 主成分分析

1.3.1 主成分分析基本原理

主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。

在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。

主成分分析首先是由K.皮尔森(Karl Pearson)对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。

主成分分析的主要目的是希望使用较少的变量去解释原来资料中的大部分的变异,将我们手上许多相关性很高的变量转化成彼此相互独立或不相关的变量。通常是选用比原始变量个数少,且新变量能解释大部分资料中变异的几个新变量即所谓的主成分,且以解释资料的综合性指标。综上所述,主成分分析法实际上式一种降维方法

假设16数学班一共40名学生,一共学习

门课程,分别使用

表示,

表示

门课程的权重,则加权之和为

                                         

                                     

为了选择更好的考核个个学生的成绩,我们希望能够选择适当的权重。每个学生都对应了这样的一个综合成绩,简记为

若计算出的值都比较分散,则表明区分较好。我们需要寻找合适的加权能够使这40位学生的分值较为分散,一下介绍其统计定义。

假设

表示以

为样本观测值的随机变量,如果能够找到

能够使

                                     

                                  

的值达到最大,因为方差表示了数据差异的程度,则表明我们设置的这

个变量的最大变异。基于种种不确定因素,需要在式加上一部分限制,否则权值就有可能选择无穷大则加权式就失去了意义。

规定

                                              

                                           

约束条件为式,求出式的最优解。而求出的解为p—维空间的一个响亮单位,代表了一个“方向”,即主成分方向。

在考核某项成绩或者某项业绩时,使用一个主成分不足以代表原先的p个变量时,就需要寻找第二个或者第三个、第四个等等多个变量,且寻找的多个变量之间不能够存在相互包含的关系,统计上描述就是让多个主成分的协方差为0,几何上表示这几个主成分的方向正交。确定各个主成分的方法如下。

假设

表示第

个主成分,且

,则

                                  

                               

其中,对于

个主成分,均有

 使得

的值达到最大,

不仅垂直于

且使得

的值达到最大,

同时垂直于

,且使

的值达到最大,以此类推可得n个主成分。如果使用计算机来对主成分的个数进行确定将会非常方便。

注意事项如下:

  1. 主成分分析最大的问题在于量纲变化,若各自变量的单位不一致,且量纲发生变化,结果将会发生不同。回归分析使不存在这种情况的,实际中应用主成分分析解决问题时,可以先把变量的数据标准化,再使用协方差矩阵或相关系数矩阵进行分析;
  2. 使方差达到最大的主成分分析不用转轴;
  3. 主成分的保留。使用相关系数求主成分时,可以将特征值小于1的主成分放弃掉(SPSS软件的默认值);
  4. 主成分的目的是降维,减少变量的个数,所以一般选用少量的主成分,且选用的这一部分能够解释变异的绝大多数累计贡献率即可。

1.3.1 特征值因子筛选

假设存在

个指标变量

则它在第

次实验中的取值为

                                        

 

则其矩阵形式为

                                       

                                    

矩阵

成为设计阵。

实际问题中,解决问题式中的系数采用矩阵

的特征向量。

将矩阵

的特征值进行由大到小的次序排列之后,对这一部分特征值进行筛选。删除一部分特征值之和小于整体特征值之和

的15%,即余下的特征值所占比重超过85%.

实际解决问题时,单纯考虑累计贡献率可能不够,需要选择主成分对原始变量的贡献值,使用相关系数的平方和爱便是,假设选用的主成为

则他们对原变量

的贡献值为

                                              

                                           

其中,

表示

之间的相关系数。

1.3.3 主成分回归分析

主成分回归分析是了克服最小二乘(LS)估计在数据矩阵A存在多重共线性时,表现出来的不稳定性而提出来的。

主成分回归分析采用将原先的回归自变量变换到另一组变量,即主成分,选择其中的一部分重要的作为新的变量,丢弃一部分不重要的自变量,实际上是为了达到降维的目的,接着再使用最小二乘法对选取主成分后的模型参数进行估计,最后再变换回原先的模型求出参数的估计。

1.4宏观投资收益指标实例分析

1.4.1问题重述

表1.2是我国1984——2000年宏观投资的一些数据,试利用主成分分析对投资效益进行分析和排序。

表1.2  1984年——2000年宏观投资效益的主要目标

年份

投资效果系数(无时滞)

投资效果系数(时滞一年)

全世界固定资产交付使用率

健身项目投产率

基建房屋

竣工率

1984

0.71

0.49

0.41

0.51

0.46

1985

0.40

0.49

0.44

0.57

0.50

1986

0.55

0.56

0.48

0.53

0.49

1987

0.62

0.93

0.38

0.53

0.47

1988

0.45

0.42

0.41

0.54

0.47

1989

0.36

0.37

0.46

0.54

0.48

1990

055

0.68

0.42

0.54

0.48

1991

0.62

0.90

0.38

0.56

0.46

1992

0.61

0.99

0.33

0.57

0.43

1993

0.71

0.93

0.35

0.66

0.44

1994

0.59

0.69

0.36

0.57

0.48

1995

0.41

0.47

0.40

0.54

0.48

1996

0.26

0.29

0.43

0.57

0.48

1997

0.14

0.16

0.43

0.55

0.47

1998

0.12

0.13

0.45

0.59

0.54

1999

0.22

0.25

0.44

0.58

0.52

2000

0.71

0.46

4.41

0.51

0.46

1.4.2 符号规定与基本假设

1. 符号规定
  1.  分别表示投资效果系数(无时滞)、投资效果系数(时滞一年)、全世界固定资产交付使用率、健身项目投产率、基建房屋竣工率;
  2.  分别表示1984年、1985年……2000年;
  3.  表示第

    年第

    个指标变量

    的取值;
  4.  表示第

    个指标变量的样本均值;;
  5.  表示第

    个指标变量的样本标准差;

2 基本假设
  1. 假设以上指标相互之间无联系;
  2. 假设以上数据无特殊含义。

1.4.3 模型的建立与分析

  1. 首先,对原始数据进行数据标准化。将各项指标值

    转换成

    ,即

                              

                          

    其中,

 。

标准化指标变量为

                                      

                                   

  1. 接着,计算相关系数矩阵R。

相关系数矩阵为

 

                                    

 

    其中,

指的是第

个指标与第

个指标的相关系数。

  1. 然后,计算特征值和特征向量。计算相关系数矩阵R特征值

    ,及相应的标准化特征向量

    ,则对应的新的指标变量为

                                     

                                  

其中,

为第1主成分,

为第2主成分,

为第5主成分等等。

  1. 选择

    个主成分,计算出综合评价值

计算特征值

的信息贡献率和累积贡献率。

                                         

                                      

为主成分

的信息贡献率,而且称

                                                   

                                                

为主成分

的累积贡献率。当

接近于1

 时,

个指标变量

作为

个主成分代替原先的5个指标,进而对

个主成分进行综合分析。

  1. 计算综合得分:

                                                   

                                               

其中,

为第

个主成分的信息贡献率,就可以根据综合得分值进行评价。

1.4.4模型的求解

使用MATLAB 软件进行编写程序额可以求得相关系数矩阵的前5个特征根机器贡献率如下表1. 3所示。

表1.3 主成分分析结果

序号

特征根

贡献率

累计贡献率

1

3.1343

62.6866

62.6866

2

1.1683

23.3670

86.0536

3

0.3502

7.0036

93.0572

4

0.2258

4.5162

97.5734

5

0.1213

2.4266

100.0000

表1.3 反映出前三个特征根的累计贡献率达93%,则主成分分析效果较好。选取前三个主成分进行综合评价。

选取的前三个特征根对应的特征向量如下表1.4 所示。

表1.4 前四个主成分对应的特征向量

 

第1特征向量

0.490542

0.525351

-0.48706

0.067054

-0.49158

第2特征向量

-0.29344

0.048988

-0.2812

0.898117

0.160648

第3特征向量

0.510897

0.4366

0.371351

0.147658

0.625475

由上表1.4可知,前三个主成分分别为

                 

 

综合构建主成分综合评价模型为

                                

                             

将上述各年度的三个主成分数值代入式,即可得到各年度的总和评价值以及排名顺序。如下表1.5所示。

      计算过程中的MATLAB 代码:

clc,clear

gj=load('data802.txt')

gj=zscore(gj);

r=corrcoef(gj);

[x,y,z]=pcacov(r)

f=repmat(sign(sum(x)),size(x,1),1);

x=x.*f

num=3;

df=gj*x(:,1:num);

tf=df*z(1:num)/100;

[stf,ind]=sort(tf,'descend');

stf=stf';ind=ind'

运行结果为:

gj =

    0.7100    0.4900    0.4100    0.5100    0.4600

    0.4000    0.4900    0.4400    0.5700    0.5000

    0.5500    0.5600    0.4800    0.5300    0.4900

    0.6200    0.9300    0.3800    0.5300    0.4700

    0.4500    0.4200    0.4100    0.5400    0.4700

    0.3600    0.3700    0.4600    0.5400    0.4800

   55.0000    0.6800    0.4200    0.5400    0.4800

    0.6200    0.9000    0.3800    0.5600    0.4600

    0.6100    0.9900    0.3300    0.5700    0.4300

    0.7100    0.9300    0.3500    0.6600    0.4400

    0.5900    0.6900    0.3600    0.5700    0.4800

    0.4100    0.4700    0.4000    0.5400    0.4800

    0.2600    0.2900    0.4300    0.5700    0.4800

    0.1400    0.1600    0.4300    0.5500    0.4700

    0.1200    0.1300    0.4500    0.5900    0.5400

    0.2200    0.2500    0.4400    0.5800    0.5200

    0.7100    0.4600    4.4100    0.5100    0.4600

x =

    0.1042    0.0938    0.9286    0.3033   -0.1614

    0.7155   -0.0222    0.0536   -0.0329    0.6954

   -0.0703    0.6877   -0.2524    0.6614    0.1449

    0.1636   -0.6758   -0.1959    0.6766   -0.1428

   -0.6674   -0.2472    0.1809    0.1083    0.6700

y =

    1.7041

    1.3911

    1.0526

    0.5974

    0.2548

z =

   34.0817

   27.8217

   21.0521

   11.9479

    5.0966

x

    0.1042   -0.0938    0.9286    0.3033   -0.1614

    0.7155    0.0222    0.0536   -0.0329    0.6954

   -0.0703   -0.6877   -0.2524    0.6614    0.1449

    0.1636    0.6758   -0.1959    0.6766   -0.1428

   -0.6674    0.2472    0.1809    0.1083    0.6700

ind =

  1 15

    10     7     9     8     4    11     2    12     5    13     3     1     6    16    14

  16 17

    15    17

1.4.5 结果分析

各年度的总和评价值以及排名顺序。如下表1.5所示。

表1.5 排名顺序即综合评价结果数值

年代

1993

1992

1991

1994

1987

1990

1984

2000

1995

名次

1

2

3

4

5

6

7

8

9

综合评价值

2.4464

1.9768

1.1123

0.8604

0.8456

0.2258

0.531

0.0531

-0.2534

年代

1988

1985

1996

1986

1989

1997

1999

1998

名次

10

11

12

13

14

15

16

17

综合评价值

0.2662

0.5292

0.7405

0.7789

0.9715

1.1476

-1.2015

-1.6848

1.5 因子分析

1.5.1 因子分析基本原理

因子分析:研究从变量群中提取共性因子的统计技术。通过研究众多变量之间存在的内部依赖关系,探求观测数据中的基本结构,并使用少数几个假想变量来表示其基本的数据结构。其中的几个假想变量可以反映出众多变量中的主要信息。原始变量是可观测的显在变量,而假想变量是不可观测的潜在变量,称之为因子。因子分析的主要目的是用来描述隐藏在一组测量到的变量中的一些更基本的,但又无法直接测量到的隐性变量 (latent variable, latent factor)。

因子分析可以看成主成分分析的推广,它也是多元统计分析中常用的一种降维方式,但因子分析所涉及的计算与主成分分析非常类似,差别也非常明显,主要有以下几方面:

  1. 主成分分析将方差分为不同的正交成分,因子分析将方差划归为不同的起因因子。
  2. 主成分分析是变量变换,而因子分析需要构造因子模型。
  3. 主成分分析中原始变量的线性组合表示新的综合变量,即主成分。因子分析中的潜在的假想变量和随机影响变量的线性组合表示原始变量。

因子分析与回归分析不同因子分析中的因子较为抽象,而回归变量具有非常明确的现实意义。

1.数学模型

个变量

可以表示为

                              

                           

或        

                    

                 

                                               

                                            

其中,

    

 

为公共因子,是不可观测的变量,他们的系数称为载荷因子。 是特殊因子,是不能被前

个公共因子包含的部分。并且满足

              

          

2.因子分析模型的性质
  1. 原始变量

    的协方差矩阵的分解。由

    得,

,

                             

                          

的值越小,则公共因子分享的成分越多。

  1. 载荷矩阵不是唯一的。设T为一个

    的正交矩阵,令 ,则模型可以表示为

                                               

                                            

3. 因子载荷矩阵的几个统计性质
  1. 因子载荷

    的统计意义

因子载荷

是第

个变量和第

个公共因子的相关系数,反映了第

个变量和第

个公共因子的相关重要性。若其绝对值越大,则相关密切程度越高。

  1. 变量共同度统计意义

变量

的共同都是因子载荷矩阵的第

行的元素的平方和,记为

对式进行左右两边求方差,得

                    

                 

                                                 

 

其中,特殊因子的方差

称为特殊方差。

  1. 公共因子

    方差贡献的统计意义

因子载荷矩阵中各列元素的平方和

                                                   

                                                

称为

对所有的

的方差贡献和,用于衡量

的相对重要性。

1.5.2 因子载荷的矩阵的估计方法

因子分析的一个基本问题式如何估计因子载荷,即如何求解因子模型式。

1. 主成分分析法

假设

为相关系数矩阵R特征值,

为相应的标准正交化特征向量。假设

,则因子载荷矩阵

                                   

                                

特殊因子的方差用

的对角元来估计,即

                                                 

                                             

2. 主因子法

主因子法是在对主成分分析法进行修改之后提出的一种新的方法,首先需要对变量及进行标准化变换,则

                                                 

 

其中,

 。

                                             

                                          

其中,

为约相关系数矩阵,且对角线上的元素是

估计特殊因子的方差方法如下:

  1. ,则主因子解与主成分解等价。
  2. ,取

    与其余的

    的简单系数的绝对值的最大者。

                                 

 

可以求得如下的因子载荷矩阵:

                                  

 

3. 最大似然估计

1.5.3因子旋转

建立因子分析数学模型可以找出公共因子以及对变量进行分组,还可以搞清楚每个公共因子的含义,便于进一步的分析。若每个公共因子的含义不清,则不利于进行实际背景的解释。而因子载荷矩阵不唯一,所以应该对因子载荷矩阵进行旋转。目的是为了简化载荷矩阵的结构,使载荷矩阵每列或行的元素平方值向0和1进行两级分化。正交旋转的主要方法如下。

  1. 方差最大化。从简化因子载荷矩阵的每一列出发,使和每个因子有关的载荷的平方方差最大。当只有少数几个变量在某个因子上存在较高的载荷时,对因子进行解释最简单。方差最大的直观意义是希望通过旋转因子后,每个因子尽量分散开来,向两极靠近。
  2. 四次方最大旋转。从简化载荷矩阵的每一行出发,通过旋转初始因子,使得每一个变量只在一个因子上存在较高的载荷,而在其他的因子上存在较低的载荷。若每一个变量只在一个银子上存在非零载荷,则因子解释是最为简单的。四次方最大法是使因子载荷矩阵中每一行的因子载荷平方的方差达到最大值。
  3. 等量最大法。等量最大法是把四次方最大法和方差最大法结合起来,求其加权平均最大。
  4. 对于两个因子的载荷矩阵来说

                                  

 取正交矩阵

                                            

 

为逆时针旋转。若作顺时针旋转,只需要将矩阵

次对角线上的两个元素进行对换即可。

若公共因子数

,可以考虑不同的两个因子的旋转,在

个因子中每次选择两个进行旋转,将有

 中选择方式,当完成

次旋转就算是完成了一个循环,再重新开始第二个循环,一直循环到明确每一个因子的含义。

1.5.4 因子得分

1. 因子分析的基本概念

使用公共因子的线性组合来表示一组观测变量的有关问题,但是若需要使用这一部分因子做其他的研究,就需要对公共因子进行测度,即对公共因子进行赋值。

因子分析的数学模型为

                    

                 

因子得分函数

                           

                       

若需要求每个因子的得分,就需要求得分函数的系数。但是式中可见,

所以不能够得到精确的数值,只能通过估计来实现。

2. 巴特莱特因子得分(加权最小二乘法)

视为因变量,将因子载荷矩阵

                                          

 

视为自变量的观测。

                         

                      

使用加权最小二乘法求得分,使

                     

                  

其中的

表示相应个案的因子得分。

使用矩阵表达即

                                               

 

要是

                                  

                              

达到最小。

经计算可得,

                                   

 

3. 回归方法

回归方法的基本思想为

假设

                    

 

因子得分函数为

                              

 

                   

 

                            

 

所以,存在

                    

 

其中,

 分别为原始变量的相关系数矩阵、第

个因子得分函数的系数以及载荷矩阵的第

列。

使用矩阵表示为

                                    

 

因子得分的估计为

                                          

 

其中,

表示第

个样本点对第

个因子

得分的估计值,

的原始数据矩阵。

1.5.5 因子分析的步骤与主成分分析的对比

  1. 因子分析的步骤:
  1. 选择分析的步骤;
  2. 计算所选原始变量的相关系数矩阵;
  3. 提出公共因子;
  4. 因子旋转;
  5. 得出结论。
  1. 主成分分析法与因子分析法的数学模型的异同点
  1. 相同点

指标的标准化、相关系数矩阵、相关系数特征值相关系数特征向量、累计贡献率确定主成分、因子个数、综合主成分的分析评价、综合因子的分析评价。

  1. 不同点

不同之处见下表1.6。

表1.6 主成分分析与因子分析法的不同点

主成分分析数学模型

因子分析的一种数学模型

 

 

R为相关系数矩阵,

表示相应的特征值和单位特征值,

 

因子载荷矩阵

为初等因子载荷矩阵,C为正交旋转矩阵

为正交矩阵

为正交矩阵

的第

列绝对值大的对应变量对

进行命名

的第

列绝对值大的对应变量归为

一类并由此对其命名

互不相同,

唯一

相关系数

不唯一

协方差

 

协方差

(特征值)表示主成分

的特征

的贡献未必等于

主成分函数

因子得分函数

主成分

的系数平方和

,无特殊因子

其中

表示共和度,

表示特殊方差

综合主成分函数

 ,其中

 

综合因子得分函数

 ,其中

1.6 人体生化检验指标因子分析

1.6.1 问题重述

表1.7资料使25名健康人的7项生化检验结果,7项生化检验指标依次为

,请对该资料进行因子分析。

表1.7 检验数据

x1

x2

x3

x4

x5

x6

x7

3.76

3.66

0.54

5.28

9.77

13.74

4.78

8.59

4.99

1.34

10.02

7.5

10.16

2.13

6.22

6.14

4.52

9.84

2.17

2.73

1.09

7.57

7.28

7.07

12.66

1.79

2.1

0.82

9.03

7.08

2.59

11.76

4.54

6.22

1.28

5.51

3.98

1.3

6.92

5.33

7.3

2.4

3.27

0.62

0.44

3.36

7.63

8.84

8.39

8.74

7

3.31

11.68

3.53

4.76

1.12

9.64

9.49

1.03

13.57

13.13

18.52

2.35

9.73

1.33

1

9.87

9.87

11.06

3.7

8.59

2.98

1.17

9.17

7.85

9.91

2.62

7.12

5.49

3.68

9.72

2.64

3.43

1.19

4.69

3.01

2.17

5.98

2.76

3.55

2.01

5.51

1.34

1.27

5.81

4.57

5.38

3.43

1.66

1.61

1.57

2.8

1.78

2.09

3.72

5.9

5.76

1.55

8.84

5.4

7.5

1.97

9.84

9.27

1.51

13.6

9.02

12.67

1.75

8.39

4.92

2.54

10.05

3.96

5.24

1.43

4.94

4.38

1.03

6.68

6.49

9.06

2.81

7.23

2.3

1.77

7.79

4.39

5.37

2.27

9.46

7.31

1.04

12

11.58

16.18

2.42

9.55

5.35

4.25

11.74

2.77

3.51

1.05

4.94

4.52

4.5

8.07

1.79

2.1

1.29

8.21

3.08

2.42

9.1

3.75

4.66

1.72

9.41

6.44

5.11

12.5

2.45

3.1

0.91

1.6.2 符号规定与基本假设

1. 符号规定
  1.  分别表示7个评价指标;
  2.  表示第

    指标变量的取值;
  3.  表示第

    个指标变量的样本均值;;
  4.  表示第

    个指标变量的样本标准差;
2. 基本假设
  1. 假设原始数据不存在偏差;
  2. 假设原始数据经过完全统计;
  3. 假设原始数据变量之间不存在联系。

1.6.3 模型的建立与分析

  1. 首先,对原始数据进行数据标准化。将各项指标值

    转换成

    ,即  

                             

                          

    其中,

 。

标准化指标变量为

                                      

                                   

  1. 接着,计算相关系数矩阵R。

相关系数矩阵为

 

                                   

 

    其中,

指的是第

个指标与第

个指标的相关系数。

  1. 然后,计算初等载荷矩阵。计算相关系数矩阵R特征值

    ,及相应的标准化特征向量

    其中,

    ,则初等载荷矩阵为

                                    

 

    可得,特征根与各因子的贡献如表1.8 所示

表1.8 特征根与特征因子的贡献

特征值

34.496

18.983

2.506

0.7988

3413

0.0379

0.0042

贡献率

60.316

33.192

4.4248

1.3968

0.5968

0.0663

0.0074

累计贡献率

60.316

93.508

97.933

99.29

99.926

99.993

100

  1. 最后,选择

    个主因子。由上表可知,选择前三个主因子。对提取的因子载荷矩阵进行旋转,进而构造因子模型

                                      

 

  1. 对上述构造模型进行求解。

1.6.4 模型的求解

将上述模型进行MATLAB软件编写程序:

clc,clear

dd=load('data803.txt');

sy=zscore(dd);

r=corrcoef(sy);

[vec1,val,con]=pcacov(r)

f1=repmat(sign(sum(vec1)),size(vec1,1),1);

vec2=vec1.*f1;

f2=repmat(sqrt(val)',size(vec2,1),1);

a=vec2.*f2

num=input('请选择主因子个数:');

am=a(:,[1:num]);

[b,t]=rotatefactors(am,'method','varimax')

bt=[b,a(:,[num+1:end])];

degree=sum(b.^2,2)

contr=sum(bt.^2)

rate=contr(1:num)/sum(contr)

coef=inv(r)*b

运行结果为:

vec1 =

    0.4051    0.2921   -0.6699    0.0988   -0.2219   -0.4378    0.2261

    0.4322    0.2222    0.6960   -0.0366   -0.4326   -0.1813    0.2409

    0.3847   -0.3565    0.1506    0.6287    0.5142   -0.1902    0.0792

    0.4942    0.2320   -0.1120    0.2039   -0.1143    0.6478   -0.4638

   -0.1271    0.5752    0.0292    0.1116    0.3894    0.3588    0.5995

   -0.0961    0.5801    0.1737   -0.0071    0.3560   -0.4361   -0.5542

   -0.4811    0.1309    0.0242    0.7345   -0.4558   -0.0259   -0.0538

val =

    3.3952

    2.8063

    0.4365

    0.2762

    0.0812

    0.0042

    0.0004

con =

   48.5026

   40.0903

    6.2355

    3.9463

    1.1599

    0.0595

    0.0058

a =

    0.7465    0.4893   -0.4426    0.0519   -0.0632    0.0282    0.0046

    0.7964    0.3722    0.4598   -0.0192   -0.1233    0.0117    0.0049

    0.7089   -0.5973    0.0995    0.3305    0.1465    0.0123    0.0016

    0.9105    0.3887   -0.0740    0.1072   -0.0326   -0.0418   -0.0094

   -0.2342    0.9635    0.0193    0.0586    0.1110   -0.0231    0.0121

   -0.1771    0.9717    0.1148   -0.0038    0.1014    0.0281   -0.0112

   -0.8864    0.2192    0.0160    0.3860   -0.1299    0.0017   -0.0011

请输入主因子的个数:3

b =

    0.9642    0.1354    0.2110

    0.3858    0.0643    0.9117

    0.2303   -0.8169    0.3858

    0.8102    0.0024    0.5737

    0.1466    0.9785    0.0673

    0.1283    0.9700    0.1770

   -0.5536    0.5444   -0.4809

t =

    0.6956   -0.3853    0.6064

    0.3340    0.9207    0.2019

   -0.6361    0.0621    0.7691

degree =

    0.9925

    0.9843

    0.8692

    0.9856

    0.9836

    0.9888

    0.8341

contr =

    2.1324    2.8846    1.6209    0.2762    0.0812    0.0042    0.0004

rate =

    0.3046    0.4121    0.2316

coef =

    0.8561    0.0129   -0.6114

   -0.4626    0.0971    0.9792

   -0.0709   -0.2622    0.2590

    0.3406    0.0137    0.0602

    0.0386    0.3454    0.0615

   -0.0879    0.3552    0.2405

   -0.1788    0.1748   -0.1144

1.6.5 结果分析

经过上述MATLAB程序运算,可得因子载荷等估计如下表1.9所示。

不难发现可得三个因子,第一个因子是

,第二个因子是

因子,第三个因子是

因子。

表1.9 因子载荷等估计表

变量

旋转因子载荷估计

旋转后得分函数

共同度

因子1

因子2

因子3

1

0.9642

0.1354

0.2110

0.8561

0.0129

-0.6114

0.9925

2

0.3858

0.0643

0.9117

-0.4626

0.0971

0.9792

0.9843

3

0.2303

-0.8169

0.3858

-0.0709

-0.2622

0.2590

0.8692

4

0.8102

0.0024

0.5737

0.3406

0.0137

0.0602

0.9856

5

0.1466

0.9785

0.0673

0.0386

0.3454

0.0615

0.9836

6

0.1283

0.9700

0.1770

-0.0879

0.3552

0.2405

0.9888

7

-0.5536

0.5444

-0.4809

-0.1788

0.1748

-0.1144

0.8341

可解释方差

0.3046

0.4121

0.2316

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
### 回答1: 任务书 一、研究背景 随着数据收集技术的不断发展和应用场景的不断拓展,多元函数型数据已经成为数据分析和挖掘领域中一个重要的研究对象。多元函数型数据的分析需要考虑到多个变量之间的复杂关系,传统的数据分析方法已经无法胜任。因此,研究多元函数型数据的算法已经成为当前数据科学领域的一个热点。 二、研究目的 本研究的主要目的是探讨多元函数型数据算法的研究及应用,包括以下方面: 1. 总结多元函数型数据的定义及特征,分析其与传统数据的区别和联系; 2. 分析多元函数型数据的预处理方法,包括数据清洗、缺失值处理、异常值处理等; 3. 探讨多元函数型数据的可视化方法,包括静态和动态可视化方法; 4. 分析多元函数型数据的聚类算法,包括基于距离、基于密度、基于模型等方法; 5. 探讨多元函数型数据的分类算法,包括基于规则、基于树、基于神经网络等方法; 6. 研究多元函数型数据的关联规则挖掘算法,分析其应用场景和方法特点; 7. 应用所学方法和算法对现有数据集进行分析,验证算法的有效性和实用性。 三、研究内容 1. 多元函数型数据的定义及特征分析; 2. 多元函数型数据的预处理方法研究; 3. 多元函数型数据的可视化方法研究; 4. 多元函数型数据的聚类算法研究; 5. 多元函数型数据的分类算法研究; 6. 多元函数型数据的关联规则挖掘算法研究; 7. 现有数据集的分析应用; 8. 结果总结与论文撰写。 四、研究方法 1. 文献综述:查阅相关文献,总结多元函数型数据的定义、特征和应用场景; 2. 理论分析:对多元函数型数据的预处理、可视化、聚类、分类和关联规则挖掘算法进行理论分析和总结; 3. 算法实现:根据所学算法实现并验证算法的有效性; 4. 数据集分析:对现有数据集进行分析,验证算法的实用性; 5. 结果总结:总结研究成果并撰写论文。 五、研究时间安 ### 回答2: 多元函数型数据是指在多维空间中存在多个变量的函数型数据,其研究和应用旨在探索和发现多个变量之间的关系、预测和优化问题。本任务书旨在明确研究多元函数型数据算法的目标、方法应用,并为相关研究工作提供指导。 一、研究目标: 1. 分析多元函数型数据的特点和应用场景,深入理解其数据结构和相关问题。 2. 探索多元函数型数据的算法模型和方法,解决多元函数型数据的关系、预测和优化问题。 3. 将多元函数型数据算法应用于实际问题,提高问题解决的准确性和效率。 二、研究内容: 1. 多元函数型数据的特点分析:对多元函数型数据的数据结构、属性和关系进行深入分析,明确研究问题的核心。 2. 多元函数型数据的算法模型研究:根据多元函数型数据的特点,设计适用的算法模型,包括但不限于回归分析、聚类分析和优化算法等。 3. 算法方法研究:针对多元函数型数据的特点,研究和改进现有的算法方法,以提高算法的准确性和效率。 4. 多元函数型数据算法应用案例研究:选取实际问题,应用多元函数型数据算法进行分析、预测或优化,验证算法的可行性和有效性。 三、研究方案: 1. 文献综述:对多元函数型数据的相关研究成果进行综述,了解研究现状和不足之处。 2. 研究方法选择:根据研究目标和内容,选择适合的研究方法,包括理论分析、实验模拟和数据挖掘等。 3. 数据收集和处理:采集并整理多元函数型数据集,将其转化为适合算法分析的数据格式。 4. 算法模型设计和方法改进:根据研究目标,设计合适的算法模型,并针对现有算法方法的不足之处进行改进和优化。 5. 实验验证和结果分析:针对具体应用案例,进行实验验证,收集和分析实验结果,并得出相关结论。 四、研究成果: 1. 多元函数型数据算法模型和方法的研究成果与改进方案。 2. 在具体应用案例中,多元函数型数据算法的实际应用效果和解决问题的能力。 3. 学术论文和科研报告,将研究成果向学术界和行业界进行传播和推广。 五、预期效果: 1. 深入理解多元函数型数据的特点和应用场景,掌握多元函数型数据算法模型和方法的基本理论和技术。 2. 在具体问题中,能够应用多元函数型数据算法进行分析、预测和优化,提高问题解决的准确性和效率。 3. 提出的算法模型和方法能够得到学术界和行业界的关注和应用,推动多元函数型数据算法的发展和应用。 ### 回答3: 任务书 1. 研究背景 对于多元函数型数据,传统的算法和方法往往不够有效和精确。由于多元函数型数据的特殊性,需要开展相关研究,以提升数据处理和分析的准确性和效率,进一步拓宽多元函数型数据的应用范围和潜力。 2. 研究目标 本研究的主要目标是开发新的算法和方法,用于处理多元函数型数据并解决其相关问题。具体目标包括: a. 分析多元函数型数据的特性和规律,深入理解其数据模式和结构; b. 设计和实现用于处理多元函数型数据的算法和模型,并进行优化和改进; c. 对比已有算法和方法,评估新算法和方法的性能和效果。 3. 研究内容 本研究的具体内容如下: a. 综述研究领域的关键技术和方法,了解当前对多元函数型数据的处理和分析方法; b. 分析多元函数型数据的特性和规律,探究其数据模式和结构的内在关联; c. 设计基于多元函数型数据的算法和模型,包括数据预处理、特征提取和模型训练等步骤; d. 实现算法和模型,使用实际多元函数型数据进行测试和验证; e. 与已有算法和方法进行对比实验,评估新算法和方法的性能和效果。 4. 研究方法 本研究将综合运用理论分析、实验设计和数值计算等方法。通过对多元函数型数据的深入研究和分析,结合已有算法和方法的优点和不足,设计新的算法和模型,从而解决多元函数型数据的处理和分析问题。 5. 预期成果 本研究的预期成果包括: a. 对多元函数型数据进行深入研究和分析,并揭示其特性和规律; b. 开发新的算法和方法,用于处理多元函数型数据并解决相关问题; c. 通过实验证明新算法和方法在处理多元函数型数据上的有效性和优越性。 6. 实施计划 本研究计划分为以下几个阶段进行: a. 确定研究方向和目标,进行相关文献综述和调研; b. 分析多元函数型数据的特性和规律,为新算法和方法的设计打下基础; c. 设计和实现新算法和方法,并进行优化和改进; d. 对比已有算法和方法,评估新算法和方法的性能和效果; e. 撰写研究报告并进行成果展示。 7. 预期影响 本研究的成果将对多元函数型数据的处理和分析领域有积极的影响。新的算法和方法有望提升多元函数型数据的处理和分析效率和准确性,为相关领域的决策和应用提供更可靠的支持。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

零物购

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值