本题来源于牛客网中,链接如下:[编程题]组队竞赛
1.题目要求
题目展示:
牛牛举办了一次编程比赛,参加比赛的有3*n个选手,每个选手都有一个水平值a_i.现在要将这些选手进行组队,一共组成n个队伍,即每个队伍3人.牛牛发现队伍的水平值等于该队伍队员中第二高水平值。
例如:
一个队伍三个队员的水平值分别是3,3,3.那么队伍的水平值是3
一个队伍三个队员的水平值分别是3,2,3.那么队伍的水平值是3
一个队伍三个队员的水平值分别是1,5,2.那么队伍的水平值是2
为了让比赛更有看点,牛牛想安排队伍使所有队伍的水平值总和最大。
如样例所示:
如果牛牛把6个队员划分到两个队伍
如果方案为:
team1:{1,2,5}, team2:{5,5,8}, 这时候水平值总和为7.
而如果方案为:
team1:{2,5,8}, team2:{1,5,5}, 这时候水平值总和为10.
没有比总和为10更大的方案,所以输出10.
输入描述:
📢输入的第一行为一个正整数n(1 ≤ n ≤ 10^5)
📢第二行包括3*n个整数a_i(1 ≤ a_i ≤ 10^9),表示每个参赛选手的水平值.
输出描述:
✅ 输出一个整数表示所有队伍的水平值总和最大值.
示例1:
⏩输入
2
5 2 8 5 1 5
⏪输出
10
2.解题思路
【题目解析】:
队伍的水平值等于该队伍队员中第二高水平值,为了所有队伍的水平值总和最大的解法,也就是说每个队伍的第二个值是尽可能大的值。所以实际值把最大值放到最右边,最小是放到最左边。
也就是说,假设我们有一组数据,我们要把这组数据平均分成若干组,每组三个,然后要让这些组的第二个值全加起来最大,就是让第二个值是尽可能大的值。
【解题思路】:
本题的主要思路是
贪心算法,贪心算法其实很简单,就是每次选值时都选当前能看到的局部最优解,所以这里的贪心就是保证每组的第二个值取到能选择的最大值就可以,我们每次尽量取最大,但是最大的数不可能是中位数,所以退而求其次,取每组中第二大的。
我们可以看一下例子:

就是先拿最前面的第一个数,然后拿最后面的两个数,得到的就是在前提为只要第二个数的最大值了。然后第二次同样拿最前面和最后面两个…
我们可以再举一个例子:

那么我们需要创建数组将每组数据存起来,然后再取中间值吗,其实不用,题目中需要的只是中间值,我们只需要把每组的中间值拿到就可以了,所以我们看看其中的关系,每次的中间值的是获取顺序数组下的倒数第二个数据,所以我们只需要拿到每次倒数第二个数的下标就可以了。
那么我们可以得到他们的关系是:
arr.length - 2*(i+1)
也就是每次去除的中间值的下标,就是第i次的arr.length - 2*(i+1),因为数组长度减去2的i+1次刚好是中间值的下标。
至于先把输入值排序,直接用函数Array.sort()就可以了。
3.参考代码
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();//输入n值
int [] array = new int[3*n];//创建3*n的数组
long sum = 0;
for (int i = 0; i < array.length; i++) {
array[i]=sc.nextInt();//输入数组数据
}
Arrays.sort(array);//排序
for (int i = 0; i < n; i++) {
sum += array[array.length-2*(i+1)];//将每组的中间值相加
}
System.out.println(sum);//输出中间值之和
}
}
tip:如果题目增加条件为多组输入输出,只需要将上面的代码放入一个while循环中即可,如
while(sc.hasNextInt()){}
运行通过:

本博客介绍了如何解决一道编程竞赛题目,目标是将3*n个选手分为n个三人队伍,使得所有队伍的水平值(每个队伍中第二高水平值)总和最大化。通过贪心算法,每次选取当前能看到的第二大数值,确保每个队伍的第二个值尽可能大。提供的解题思路和参考代码使用Java实现,通过排序和计算倒数第二个元素来确定每个队伍的中间值,最终输出所有队伍中间值的和作为答案。
1333

被折叠的 条评论
为什么被折叠?



