mindspore两日集训营202209-预热作业和MindSpore Transformer

https://gitee.com/mindspore/community/issues/I5N0IZ
预热作业
如图,非常简单,这样就跑起来了。
在这里插入图片描述
我们顺利地把4个样例全部跑完了。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1、GPT
第一个pytest非常简单,运行就可以了
第二个跑脚本,需要注意几点,我们先用官网案例试一试

git clone https://gitee.com/mindspore/models.git
cd  models/research/nlp/gpt2


可以参考这篇论文
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf

针对这次的作业,参考https://gitee.com/mindspore/transformer/blob/master/examples/preprocess/gptpreprocess/README.md

我们下载其中一部分数据后解压,

cd openwebtext
xz -dk *

在这里插入图片描述
我们看到,这是一些文本信息。
在这里插入图片描述
在这里插入图片描述

cd ..
python pre_process.py \
--input_glob=./openwebtext/* \
--dataset_type=openwebtext \
--output_file=./output/openwebtext.mindrecord

如果遇到了编码问题,请在代码中加上errors=‘ignore’
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
终于搞定了,

python -m transformer.train \
--config='./transformer/configs/gpt/gpt_base.yaml' \
--epoch_size=1 \
--data_url='./examples/preprocess/gptpreprocess/output/' \
--optimizer="adam"  \
--seq_length=1024 \
--parallel_mode="stand_alone" \
--global_batch_size=4 \
--vocab_size=50257 \
--hidden_size=2048 \
--num_layers=24 \
--num_heads=16 \
--device_target="GPU" > standalone_train_gpu_log.txt 2>&1 &

在这里插入图片描述
显然,wsl这么跑是会崩掉的
那我们用启智openi跑一跑
在这里插入图片描述
这里bb了一句这样的话,我就不知道能否成功了,因此压缩后再上传一次。
在这里插入图片描述
不错子

但是这个元数据毕竟太大,我们可以采用其他的数据集训练,或者使用一些中文文本训练对话机器人
我们要创建自己的mindrecord
在这里插入图片描述
最后折腾了半天,也没有搞清楚官网的教程,迫不得已,自己写了一个。
以下是开源链接
最后可以达到这样的效果,也就训练了几分钟,勉勉强强
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

irrationality

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值