【面试经典 150 | 分治】排序链表

本文详细介绍了三种解决链表排序问题的方法:链表转数组、自顶向下归并排序和自底向上归并排序。作者提供了代码示例,并分析了每种方法的时间复杂度和空间复杂度。
摘要由CSDN通过智能技术生成

写在前面

本专栏专注于分析与讲解【面试经典150】算法,两到三天更新一篇文章,欢迎催更……

专栏内容以分析题目为主,并附带一些对于本题涉及到的数据结构等内容进行回顾与总结,文章结构大致如下,部分内容会有增删:

  • Tag:介绍本题牵涉到的知识点、数据结构;
  • 题目来源:贴上题目的链接,方便大家查找题目并完成练习;
  • 题目解读:复述题目(确保自己真的理解题目意思),并强调一些题目重点信息;
  • 解题思路:介绍一些解题思路,每种解题思路包括思路讲解、实现代码以及复杂度分析;
  • 知识回忆:针对今天介绍的题目中的重点内容、数据结构进行回顾总结。

Tag

【链表】【分治】【归并排序】


题目来源

148. 排序链表


解题思路

方法一:链表转数组

一种朴素的解法是将链表中的节点存储到数组中,然后对数组按节点值进行升序排序,排好序后,将节点数组再连接成一条链表。该方法比较简单,直接给出代码。

代码

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    // 自定义排序的仿函数
	struct myclass {
		bool operator() (ListNode *n1, ListNode *n2) {
			return n1->val < n2->val;
		}
	} myobject;

	ListNode* sortList(ListNode* head) {
		if (head == nullptr || head->next == nullptr) {
			return head;
		}
		vector<ListNode*> tmp;
		ListNode *curr = head;
		while (curr != nullptr) {
			tmp.push_back(curr);
			curr = curr->next;
		}

		sort(tmp.begin(), tmp.end(), myobject);

		int n = tmp.size();
		head = tmp[0];

		curr = head;
		for (int i = 1; i < tmp.size(); ++i) {
			curr->next = tmp[i];
			curr = curr->next;
		}
        // 最后一个结点的next要置空
        curr->next = nullptr;

		return head;
	}
};

复杂度分析

时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn) n n n 是链表中节点个数。本题的时间瓶颈在于排序的时间复杂度。

空间复杂度: O ( n ) O(n) O(n),使用一个额外的数组记录链表中的节点的空间复杂度为 O ( n ) O(n) O(n)。最坏情况下,需要排序的序列是逆序的,需要 n 次递归调用。因此需要 O ( n ) O(n) O(n) 的栈空间

方法二:自顶向下归并排序

对链表进行自顶向下的归并排序步骤如下:

  • 找到链表的中点,以中点为分界,将链表拆分成两个子链表。寻找链表的中间节点可以使用快慢指针来实现,快指针每次移动 2 步,慢指针每次移动 1 步,当快指针到达链表末尾时,慢指针指向的链表节点即为链表的中点。
  • 递归对两个子链表进行排序。
  • 将两个升序的子链表进行合并。合并两个有序链表可以参考 【面试经典150 | 链表】合并两个有序链表

代码

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
private:
    ListNode* sortList(ListNode* head, ListNode* tail) {
        if (head == nullptr) {      // 递归出口
            return head;
        }

        if (head->next == tail) {   // 递归出口
            head->next = nullptr;
            return head;
        }

        ListNode* slow = head, *fast = head;
        while (fast != tail) {
            slow = slow->next;
            fast = fast->next;
            if (fast != tail) {     // 无论链表长度是奇偶,都返回中间节点的左边那个(奇数则直接返回中间节点)
                fast = fast->next;
            }
        }
        ListNode* mid = slow;
        return merge(sortList(head, mid), sortList(mid, tail));
    }

    // 合并两个有序链表
    ListNode* merge(ListNode* head1, ListNode* head2) {
        ListNode* dummy = new ListNode(0);
        ListNode* prev = dummy;
        while (head1 && head2) {
            if (head1->val < head2->val) {
                prev->next = head1;
                head1 = head1->next;
            }
            else {
                prev->next = head2;
                head2 = head2->next;
            }
            prev = prev->next;
        }

        prev->next = head1 ? head1 : head2;
        return dummy->next;
    }
public:
    ListNode* sortList(ListNode* head) {
        return sortList(head, nullptr);
    }
};

复杂度分析

时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn) n n n 是链表中节点个数。

空间复杂度: O ( l o g n ) O(logn) O(logn),空间复杂度取决于递归调用的占空间。

方法三:自底向上的归并排序

归并排序除了自顶向下实现,也可自底向上实现。自底向上的归并排序空间复杂度为 O ( 1 ) O(1) O(1)

首先要求出链表的长度 len。利用迭代可以轻松求出。

接着将链表拆分成子链表进行合并,具体步骤如下:

  • 枚举需要排序的子链表长度,自底向上的排序,初始化子链表长度 subLen = 1
  • 每次将链表拆分成若干个长度为 subLen 的子链表(最后一个链表的长度可以小于 subLen),按照每两个子链表一组进行合并,合并后即可得到若干个长度为 subLen × 2 的有序子链表(最后一个子链表的长度可以小于 subLength × 2。合并两个子链表仍然使用「21. 合并两个有序链表」的做法。
  • subLen 的值加倍,重复第 2 步,对更长的有序子链表进行合并操作,直到有序子链表的长度大于或等于 len,整个链表排序完毕。

代码

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
private:
    ListNode* merge(ListNode* head1, ListNode* head2) {
        ListNode* dummy = new ListNode(0);
        ListNode* prev = dummy;
        while (head1 && head2) {
            if (head1->val < head2->val) {
                prev->next = head1;
                head1 = head1->next;
            }
            else {
                prev->next = head2;
                head2 = head2->next;
            }
            prev = prev->next;
        }

        prev->next = head1 ? head1 : head2;
        return dummy->next;
    }

public:
    ListNode* sortList(ListNode* head) {
        if (head == nullptr) {
            return head;
        }

        int len = 0;
        ListNode* node = head;
        while (node != nullptr) {
            ++len;
            node = node->next;
        }
        ListNode* dummy = new ListNode(0, head);
        for (int subLen = 1; subLen < len; subLen <<= 1) {
            ListNode* prev = dummy, *cur = dummy->next;
            while (cur) {
                ListNode* head1 = cur;      // 第一个长度为 subLen 的子节点开头
                for (int i = 1; i < subLen && cur->next; ++i) {// 第一个 subLen 子节点末尾的节点
                    cur = cur->next;
                }
                ListNode* head2 = cur->next;// 第二个长度为 subLen 的子节点开头
                cur->next = nullptr;
                cur = head2;
                for (int i = 1; i < subLen && cur && cur->next; ++i) {// 第二个 subLen 子节点末尾的节点
                    cur = cur->next;
                }

                ListNode* next = nullptr;   //  维护下一个长度为 subLen 的子节点开头
                if (cur) {
                    next = cur->next;
                    cur->next = nullptr;
                }
                ListNode* merged = merge(head1, head2);
                prev->next = merged; 
                while (prev->next) {
                    prev = prev->next;
                }
                cur = next;
            }
        }
        return dummy->next;
    }
};

复杂度分析

时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn) n n n 是链表中节点个数。

空间复杂度: O ( 1 ) O(1) O(1)


写在最后

如果您发现文章有任何错误或者对文章有任何疑问,欢迎私信博主或者在评论区指出 💬💬💬。

如果大家有更优的时间、空间复杂度的方法,欢迎评论区交流。

最后,感谢您的阅读,如果有所收获的话可以给我点一个 👍 哦。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wang_nn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值